islasher commited on
Commit
5827b0b
·
verified ·
1 Parent(s): dcc31e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py CHANGED
@@ -21,6 +21,46 @@ model = AutoModelForSeq2SeqLM.from_pretrained(nombre_modelo)
21
  tokenizer = AutoTokenizer.from_pretrained(nombre_modelo)
22
 
23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  def predict(frase):
25
  #img = PILImage.create(img)
26
  inputs = tokenizer(frase, return_tensors="pt")
 
21
  tokenizer = AutoTokenizer.from_pretrained(nombre_modelo)
22
 
23
 
24
+
25
+
26
+
27
+ import numpy as np
28
+
29
+ import evaluate
30
+
31
+ metric = evaluate.load("sacrebleu")
32
+
33
+ def postprocess_text(preds, labels):
34
+ preds = [pred.strip() for pred in preds]
35
+ labels = [[label.strip()] for label in labels]
36
+
37
+ return preds, labels
38
+
39
+ def compute_metrics(eval_preds):
40
+ preds, labels = eval_preds
41
+ if isinstance(preds, tuple):
42
+ preds = preds[0]
43
+ decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
44
+
45
+ labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
46
+ decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
47
+
48
+ decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
49
+
50
+ result = metric.compute(predictions=decoded_preds, references=decoded_labels)
51
+ result = {"bleu": result["score"]}
52
+
53
+ prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
54
+ result["gen_len"] = np.mean(prediction_lens)
55
+ result = {k: round(v, 4) for k, v in result.items()}
56
+ return result
57
+
58
+
59
+
60
+
61
+ #CAMBIAR LO QUE SE RETORNA Y PONER LO DEL DECODER.
62
+
63
+
64
  def predict(frase):
65
  #img = PILImage.create(img)
66
  inputs = tokenizer(frase, return_tensors="pt")