|
|
|
|
|
import os |
|
|
|
|
|
import subprocess |
|
|
|
|
|
subprocess.run('nvidia-smi', shell=True) |
|
os.mkdir("image") |
|
|
|
from pyvirtualdisplay import Display |
|
display = Display(visible=0, size=(1920, 1080)).start() |
|
|
|
|
|
|
|
import numpy as np |
|
import argparse |
|
import glob |
|
import os |
|
from functools import partial |
|
import vispy |
|
import scipy.misc as misc |
|
from tqdm import tqdm |
|
import yaml |
|
import time |
|
import sys |
|
from mesh import write_ply, read_ply, output_3d_photo |
|
from utils import get_MiDaS_samples, read_MiDaS_depth |
|
import torch |
|
import cv2 |
|
from skimage.transform import resize |
|
import imageio |
|
import copy |
|
from networks import Inpaint_Color_Net, Inpaint_Depth_Net, Inpaint_Edge_Net |
|
from MiDaS.run import run_depth |
|
from boostmonodepth_utils import run_boostmonodepth |
|
from MiDaS.monodepth_net import MonoDepthNet |
|
import MiDaS.MiDaS_utils as MiDaS_utils |
|
from bilateral_filtering import sparse_bilateral_filtering |
|
|
|
import torch |
|
|
|
|
|
import gradio as gr |
|
import uuid |
|
from PIL import Image |
|
from pathlib import Path |
|
import shutil |
|
from time import sleep |
|
|
|
def inpaint(img_name, num_frames, fps): |
|
|
|
config = yaml.load(open('argument.yml', 'r')) |
|
|
|
config['num_frames'] = num_frames |
|
config['fps'] = fps |
|
|
|
if torch.cuda.is_available(): |
|
config['gpu_ids'] = 0 |
|
|
|
if config['offscreen_rendering'] is True: |
|
vispy.use(app='egl') |
|
|
|
os.makedirs(config['mesh_folder'], exist_ok=True) |
|
os.makedirs(config['video_folder'], exist_ok=True) |
|
os.makedirs(config['depth_folder'], exist_ok=True) |
|
sample_list = get_MiDaS_samples(config['src_folder'], config['depth_folder'], config, config['specific'], img_name.stem) |
|
normal_canvas, all_canvas = None, None |
|
|
|
if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0): |
|
device = config["gpu_ids"] |
|
else: |
|
device = "cpu" |
|
|
|
print(f"running on device {device}") |
|
|
|
for idx in tqdm(range(len(sample_list))): |
|
depth = None |
|
sample = sample_list[idx] |
|
print("Current Source ==> ", sample['src_pair_name']) |
|
mesh_fi = os.path.join(config['mesh_folder'], sample['src_pair_name'] +'.ply') |
|
image = imageio.imread(sample['ref_img_fi']) |
|
|
|
print(f"Running depth extraction at {time.time()}") |
|
if config['use_boostmonodepth'] is True: |
|
run_boostmonodepth(sample['ref_img_fi'], config['src_folder'], config['depth_folder']) |
|
elif config['require_midas'] is True: |
|
run_depth([sample['ref_img_fi']], config['src_folder'], config['depth_folder'], |
|
config['MiDaS_model_ckpt'], MonoDepthNet, MiDaS_utils, target_w=640) |
|
|
|
if 'npy' in config['depth_format']: |
|
config['output_h'], config['output_w'] = np.load(sample['depth_fi']).shape[:2] |
|
else: |
|
config['output_h'], config['output_w'] = imageio.imread(sample['depth_fi']).shape[:2] |
|
frac = config['longer_side_len'] / max(config['output_h'], config['output_w']) |
|
config['output_h'], config['output_w'] = int(config['output_h'] * frac), int(config['output_w'] * frac) |
|
config['original_h'], config['original_w'] = config['output_h'], config['output_w'] |
|
if image.ndim == 2: |
|
image = image[..., None].repeat(3, -1) |
|
if np.sum(np.abs(image[..., 0] - image[..., 1])) == 0 and np.sum(np.abs(image[..., 1] - image[..., 2])) == 0: |
|
config['gray_image'] = True |
|
else: |
|
config['gray_image'] = False |
|
image = cv2.resize(image, (config['output_w'], config['output_h']), interpolation=cv2.INTER_AREA) |
|
depth = read_MiDaS_depth(sample['depth_fi'], 3.0, config['output_h'], config['output_w']) |
|
mean_loc_depth = depth[depth.shape[0]//2, depth.shape[1]//2] |
|
if not(config['load_ply'] is True and os.path.exists(mesh_fi)): |
|
vis_photos, vis_depths = sparse_bilateral_filtering(depth.copy(), image.copy(), config, num_iter=config['sparse_iter'], spdb=False) |
|
depth = vis_depths[-1] |
|
model = None |
|
torch.cuda.empty_cache() |
|
print("Start Running 3D_Photo ...") |
|
print(f"Loading edge model at {time.time()}") |
|
depth_edge_model = Inpaint_Edge_Net(init_weights=True) |
|
depth_edge_weight = torch.load(config['depth_edge_model_ckpt'], |
|
map_location=torch.device(device)) |
|
depth_edge_model.load_state_dict(depth_edge_weight) |
|
depth_edge_model = depth_edge_model.to(device) |
|
depth_edge_model.eval() |
|
|
|
print(f"Loading depth model at {time.time()}") |
|
depth_feat_model = Inpaint_Depth_Net() |
|
depth_feat_weight = torch.load(config['depth_feat_model_ckpt'], |
|
map_location=torch.device(device)) |
|
depth_feat_model.load_state_dict(depth_feat_weight, strict=True) |
|
depth_feat_model = depth_feat_model.to(device) |
|
depth_feat_model.eval() |
|
depth_feat_model = depth_feat_model.to(device) |
|
print(f"Loading rgb model at {time.time()}") |
|
rgb_model = Inpaint_Color_Net() |
|
rgb_feat_weight = torch.load(config['rgb_feat_model_ckpt'], |
|
map_location=torch.device(device)) |
|
rgb_model.load_state_dict(rgb_feat_weight) |
|
rgb_model.eval() |
|
rgb_model = rgb_model.to(device) |
|
graph = None |
|
|
|
|
|
print(f"Writing depth ply (and basically doing everything) at {time.time()}") |
|
rt_info = write_ply(image, |
|
depth, |
|
sample['int_mtx'], |
|
mesh_fi, |
|
config, |
|
rgb_model, |
|
depth_edge_model, |
|
depth_edge_model, |
|
depth_feat_model) |
|
|
|
if rt_info is False: |
|
continue |
|
rgb_model = None |
|
color_feat_model = None |
|
depth_edge_model = None |
|
depth_feat_model = None |
|
torch.cuda.empty_cache() |
|
if config['save_ply'] is True or config['load_ply'] is True: |
|
verts, colors, faces, Height, Width, hFov, vFov = read_ply(mesh_fi) |
|
else: |
|
verts, colors, faces, Height, Width, hFov, vFov = rt_info |
|
|
|
|
|
print(f"Making video at {time.time()}") |
|
videos_poses, video_basename = copy.deepcopy(sample['tgts_poses']), sample['tgt_name'] |
|
top = (config.get('original_h') // 2 - sample['int_mtx'][1, 2] * config['output_h']) |
|
left = (config.get('original_w') // 2 - sample['int_mtx'][0, 2] * config['output_w']) |
|
down, right = top + config['output_h'], left + config['output_w'] |
|
border = [int(xx) for xx in [top, down, left, right]] |
|
normal_canvas, all_canvas = output_3d_photo(verts.copy(), colors.copy(), faces.copy(), copy.deepcopy(Height), copy.deepcopy(Width), copy.deepcopy(hFov), copy.deepcopy(vFov), |
|
copy.deepcopy(sample['tgt_pose']), sample['video_postfix'], copy.deepcopy(sample['ref_pose']), copy.deepcopy(config['video_folder']), |
|
image.copy(), copy.deepcopy(sample['int_mtx']), config, image, |
|
videos_poses, video_basename, config.get('original_h'), config.get('original_w'), border=border, depth=depth, normal_canvas=normal_canvas, all_canvas=all_canvas, |
|
mean_loc_depth=mean_loc_depth) |
|
|
|
def resizer(input_img, max_img_size=512): |
|
width, height = input_img.size |
|
long_edge = height if height >= width else width |
|
if long_edge > max_img_size: |
|
ratio = max_img_size / long_edge |
|
resized_width = int(ratio * width) |
|
resized_height = int(ratio * height) |
|
resized_input_img = input_img.resize((resized_width, resized_height), resample=2) |
|
return resized_input_img |
|
|
|
else: |
|
return input_img |
|
|
|
def main_app(input_img, num_frames, fps): |
|
|
|
|
|
input_img = resizer(input_img) |
|
|
|
|
|
|
|
img_name = Path('sample.jpg') |
|
save_folder = Path('image') |
|
input_img.save(save_folder/img_name) |
|
|
|
inpaint(img_name, num_frames, fps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_img_path = str(save_folder/img_name) |
|
out_vid_path = 'video/{0}_circle.mp4'.format(img_name.stem) |
|
|
|
return out_vid_path |
|
|
|
video_choices = ['dolly-zoom-in', 'zoom-in', 'circle', 'swing'] |
|
gradio_inputs = [gr.Image(type='pil', label='Input Image'), |
|
gr.Slider(minimum=60, maximum=240, step=1, default=120, label="Number of Frames"), |
|
gr.Slider(minimum=10, maximum=40, step=1, default=20, label="Frames per Second (FPS)")] |
|
|
|
gradio_outputs = [gr.Video(label='Output Video')] |
|
examples = [ ['moon.jpg', 60, 10], ['dog.jpg', 60, 10] ] |
|
|
|
description="Convert an image into a trajectory-following video. Images are automatically resized down to a max edge of 512. | NOTE: The current runtime for a sample is around 400-700 seconds. Running on a lower number of frames could help! Do be patient as this is on CPU-only, BUT if this space maybe gets a GPU one day, it's already configured to run with GPU-support :) If you have a GPU, feel free to use the author's original repo (linked at the bottom of this path, they have a collab notebook!) You can also run this space/gradio app locally!" |
|
|
|
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2004.04727' target='_blank'>3D Photography using Context-aware Layered Depth Inpainting</a> | <a href='https://shihmengli.github.io/3D-Photo-Inpainting/' target='_blank'>Github Project Page</a> | <a href='https://github.com/vt-vl-lab/3d-photo-inpainting' target='_blank'>Github Repo</a></p>" |
|
|
|
iface = gr.Interface(fn=main_app, inputs=gradio_inputs , outputs=gradio_outputs, examples=examples, |
|
title='3D Image Inpainting', |
|
description=description, |
|
article=article, |
|
allow_flagging='never', |
|
theme="default", |
|
cache_examples=False).launch(enable_queue=True, debug=True) |
|
|