|
import numpy as np |
|
import argparse |
|
import glob |
|
import os |
|
from functools import partial |
|
import vispy |
|
import scipy.misc as misc |
|
from tqdm import tqdm |
|
import yaml |
|
import time |
|
import sys |
|
from mesh import write_ply, read_ply, output_3d_photo |
|
from utils import get_MiDaS_samples, read_MiDaS_depth |
|
import torch |
|
import cv2 |
|
from skimage.transform import resize |
|
import imageio |
|
import copy |
|
from networks import Inpaint_Color_Net, Inpaint_Depth_Net, Inpaint_Edge_Net |
|
from MiDaS.run import run_depth |
|
from boostmonodepth_utils import run_boostmonodepth |
|
from MiDaS.monodepth_net import MonoDepthNet |
|
import MiDaS.MiDaS_utils as MiDaS_utils |
|
from bilateral_filtering import sparse_bilateral_filtering |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--config', type=str, default='argument.yml',help='Configure of post processing') |
|
args = parser.parse_args() |
|
config = yaml.load(open(args.config, 'r')) |
|
if config['offscreen_rendering'] is True: |
|
vispy.use(app='egl') |
|
os.makedirs(config['mesh_folder'], exist_ok=True) |
|
os.makedirs(config['video_folder'], exist_ok=True) |
|
os.makedirs(config['depth_folder'], exist_ok=True) |
|
sample_list = get_MiDaS_samples(config['src_folder'], config['depth_folder'], config, config['specific']) |
|
normal_canvas, all_canvas = None, None |
|
|
|
if isinstance(config["gpu_ids"], int) and (config["gpu_ids"] >= 0): |
|
device = config["gpu_ids"] |
|
else: |
|
device = "cpu" |
|
|
|
print(f"running on device {device}") |
|
|
|
for idx in tqdm(range(len(sample_list))): |
|
depth = None |
|
sample = sample_list[idx] |
|
print("Current Source ==> ", sample['src_pair_name']) |
|
mesh_fi = os.path.join(config['mesh_folder'], sample['src_pair_name'] +'.ply') |
|
image = imageio.imread(sample['ref_img_fi']) |
|
|
|
print(f"Running depth extraction at {time.time()}") |
|
if config['use_boostmonodepth'] is True: |
|
run_boostmonodepth(sample['ref_img_fi'], config['src_folder'], config['depth_folder']) |
|
elif config['require_midas'] is True: |
|
run_depth([sample['ref_img_fi']], config['src_folder'], config['depth_folder'], |
|
config['MiDaS_model_ckpt'], MonoDepthNet, MiDaS_utils, target_w=640) |
|
|
|
if 'npy' in config['depth_format']: |
|
config['output_h'], config['output_w'] = np.load(sample['depth_fi']).shape[:2] |
|
else: |
|
config['output_h'], config['output_w'] = imageio.imread(sample['depth_fi']).shape[:2] |
|
frac = config['longer_side_len'] / max(config['output_h'], config['output_w']) |
|
config['output_h'], config['output_w'] = int(config['output_h'] * frac), int(config['output_w'] * frac) |
|
config['original_h'], config['original_w'] = config['output_h'], config['output_w'] |
|
if image.ndim == 2: |
|
image = image[..., None].repeat(3, -1) |
|
if np.sum(np.abs(image[..., 0] - image[..., 1])) == 0 and np.sum(np.abs(image[..., 1] - image[..., 2])) == 0: |
|
config['gray_image'] = True |
|
else: |
|
config['gray_image'] = False |
|
image = cv2.resize(image, (config['output_w'], config['output_h']), interpolation=cv2.INTER_AREA) |
|
depth = read_MiDaS_depth(sample['depth_fi'], 3.0, config['output_h'], config['output_w']) |
|
mean_loc_depth = depth[depth.shape[0]//2, depth.shape[1]//2] |
|
if not(config['load_ply'] is True and os.path.exists(mesh_fi)): |
|
vis_photos, vis_depths = sparse_bilateral_filtering(depth.copy(), image.copy(), config, num_iter=config['sparse_iter'], spdb=False) |
|
depth = vis_depths[-1] |
|
model = None |
|
torch.cuda.empty_cache() |
|
print("Start Running 3D_Photo ...") |
|
print(f"Loading edge model at {time.time()}") |
|
depth_edge_model = Inpaint_Edge_Net(init_weights=True) |
|
depth_edge_weight = torch.load(config['depth_edge_model_ckpt'], |
|
map_location=torch.device(device)) |
|
depth_edge_model.load_state_dict(depth_edge_weight) |
|
depth_edge_model = depth_edge_model.to(device) |
|
depth_edge_model.eval() |
|
|
|
print(f"Loading depth model at {time.time()}") |
|
depth_feat_model = Inpaint_Depth_Net() |
|
depth_feat_weight = torch.load(config['depth_feat_model_ckpt'], |
|
map_location=torch.device(device)) |
|
depth_feat_model.load_state_dict(depth_feat_weight, strict=True) |
|
depth_feat_model = depth_feat_model.to(device) |
|
depth_feat_model.eval() |
|
depth_feat_model = depth_feat_model.to(device) |
|
print(f"Loading rgb model at {time.time()}") |
|
rgb_model = Inpaint_Color_Net() |
|
rgb_feat_weight = torch.load(config['rgb_feat_model_ckpt'], |
|
map_location=torch.device(device)) |
|
rgb_model.load_state_dict(rgb_feat_weight) |
|
rgb_model.eval() |
|
rgb_model = rgb_model.to(device) |
|
graph = None |
|
|
|
|
|
print(f"Writing depth ply (and basically doing everything) at {time.time()}") |
|
rt_info = write_ply(image, |
|
depth, |
|
sample['int_mtx'], |
|
mesh_fi, |
|
config, |
|
rgb_model, |
|
depth_edge_model, |
|
depth_edge_model, |
|
depth_feat_model) |
|
|
|
if rt_info is False: |
|
continue |
|
rgb_model = None |
|
color_feat_model = None |
|
depth_edge_model = None |
|
depth_feat_model = None |
|
torch.cuda.empty_cache() |
|
if config['save_ply'] is True or config['load_ply'] is True: |
|
verts, colors, faces, Height, Width, hFov, vFov = read_ply(mesh_fi) |
|
else: |
|
verts, colors, faces, Height, Width, hFov, vFov = rt_info |
|
|
|
|
|
print(f"Making video at {time.time()}") |
|
videos_poses, video_basename = copy.deepcopy(sample['tgts_poses']), sample['tgt_name'] |
|
top = (config.get('original_h') // 2 - sample['int_mtx'][1, 2] * config['output_h']) |
|
left = (config.get('original_w') // 2 - sample['int_mtx'][0, 2] * config['output_w']) |
|
down, right = top + config['output_h'], left + config['output_w'] |
|
border = [int(xx) for xx in [top, down, left, right]] |
|
normal_canvas, all_canvas = output_3d_photo(verts.copy(), colors.copy(), faces.copy(), copy.deepcopy(Height), copy.deepcopy(Width), copy.deepcopy(hFov), copy.deepcopy(vFov), |
|
copy.deepcopy(sample['tgt_pose']), sample['video_postfix'], copy.deepcopy(sample['ref_pose']), copy.deepcopy(config['video_folder']), |
|
image.copy(), copy.deepcopy(sample['int_mtx']), config, image, |
|
videos_poses, video_basename, config.get('original_h'), config.get('original_w'), border=border, depth=depth, normal_canvas=normal_canvas, all_canvas=all_canvas, |
|
mean_loc_depth=mean_loc_depth) |
|
|