Commit
·
c3ae2a6
0
Parent(s):
Duplicate from GIanlucaRub/DoubleResolution
Browse filesCo-authored-by: Gianluca Ruberto <[email protected]>
- .gitattributes +34 -0
- README.md +13 -0
- app.py +143 -0
- requirements.txt +2 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: DoubleResolution
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.15.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: GIanlucaRub/DoubleResolution
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from math import ceil
|
4 |
+
from huggingface_hub import from_pretrained_keras
|
5 |
+
|
6 |
+
model = from_pretrained_keras("GIanlucaRub/doubleResFinal")
|
7 |
+
def double_res(input_image):
|
8 |
+
input_height = input_image.shape[0]
|
9 |
+
input_width = input_image.shape[1]
|
10 |
+
height = ceil(input_height/128)
|
11 |
+
width = ceil(input_width/128)
|
12 |
+
expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8)
|
13 |
+
np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image)
|
14 |
+
|
15 |
+
output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32)
|
16 |
+
|
17 |
+
to_predict = []
|
18 |
+
for i in range(height):
|
19 |
+
for j in range(width):
|
20 |
+
temp_slice = expanded_input_image[i *
|
21 |
+
128:(i+1)*128, j*128:(j+1)*128]/255
|
22 |
+
to_predict.append(temp_slice)
|
23 |
+
|
24 |
+
# removing inner borders
|
25 |
+
|
26 |
+
for i in range(height):
|
27 |
+
for j in range(width):
|
28 |
+
if i != 0 and j != 0 and i != height-1 and j != width-1:
|
29 |
+
right_slice = expanded_input_image[i *
|
30 |
+
128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255
|
31 |
+
to_predict.append(right_slice)
|
32 |
+
|
33 |
+
|
34 |
+
left_slice = expanded_input_image[i *
|
35 |
+
128:(i+1)*128, j*128-64:(j)*128+64]/255
|
36 |
+
to_predict.append(left_slice)
|
37 |
+
|
38 |
+
|
39 |
+
upper_slice = expanded_input_image[(
|
40 |
+
i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255
|
41 |
+
to_predict.append(upper_slice)
|
42 |
+
|
43 |
+
|
44 |
+
lower_slice = expanded_input_image[i *
|
45 |
+
128-64:i*128+64, j*128:(j+1)*128]/255
|
46 |
+
to_predict.append(lower_slice)
|
47 |
+
# removing angles
|
48 |
+
|
49 |
+
lower_right_slice = expanded_input_image[i *
|
50 |
+
128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255
|
51 |
+
to_predict.append(lower_right_slice)
|
52 |
+
|
53 |
+
lower_left_slice = expanded_input_image[i *
|
54 |
+
128-64:i*128+64, j*128-64:j*128+64]/255
|
55 |
+
to_predict.append(lower_left_slice)
|
56 |
+
|
57 |
+
# predicting all images at once
|
58 |
+
completed = False
|
59 |
+
n = 16
|
60 |
+
while not completed:
|
61 |
+
try:
|
62 |
+
print("attempting with "+ str(n))
|
63 |
+
predicted = model.predict(np.array(to_predict),batch_size = n)
|
64 |
+
completed = True
|
65 |
+
print("completed with "+ str(n))
|
66 |
+
except:
|
67 |
+
print("attempt with " + str(n) + " failed")
|
68 |
+
n += -1
|
69 |
+
if n <= 0:
|
70 |
+
n = 1
|
71 |
+
counter = 0
|
72 |
+
for i in range(height):
|
73 |
+
for j in range(width):
|
74 |
+
np.copyto(output_image[i*256:(i+1)*256, j *
|
75 |
+
256:(j+1)*256], predicted[counter])
|
76 |
+
counter+=1
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
for i in range(height):
|
81 |
+
for j in range(width):
|
82 |
+
if i != 0 and j != 0 and i != height-1 and j != width-1:
|
83 |
+
right_upsampled_slice = predicted[counter]
|
84 |
+
counter+=1
|
85 |
+
resized_right_slice = right_upsampled_slice[64:192, 64:192]
|
86 |
+
np.copyto(output_image[i*256+64:(i+1)*256-64,
|
87 |
+
(j+1)*256-64:(j+1)*256+64], resized_right_slice)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
left_upsampled_slice = predicted[counter]
|
93 |
+
counter+=1
|
94 |
+
resized_left_slice = left_upsampled_slice[64:192, 64:192]
|
95 |
+
np.copyto(output_image[i*256+64:(i+1)*256-64,
|
96 |
+
j*256-64:j*256+64], resized_left_slice)
|
97 |
+
|
98 |
+
|
99 |
+
|
100 |
+
upper_upsampled_slice = predicted[counter]
|
101 |
+
counter+=1
|
102 |
+
resized_upper_slice = upper_upsampled_slice[64:192, 64:192]
|
103 |
+
np.copyto(output_image[(i+1)*256-64:(i+1)*256+64,
|
104 |
+
j*256+64:(j+1)*256-64], resized_upper_slice)
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
lower_upsampled_slice = predicted[counter]
|
109 |
+
counter+=1
|
110 |
+
resized_lower_slice = lower_upsampled_slice[64:192, 64:192]
|
111 |
+
np.copyto(output_image[i*256-64:i*256+64,
|
112 |
+
j*256+64:(j+1)*256-64], resized_lower_slice)
|
113 |
+
|
114 |
+
|
115 |
+
|
116 |
+
lower_right_upsampled_slice = predicted[counter]
|
117 |
+
counter+=1
|
118 |
+
resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192]
|
119 |
+
np.copyto(output_image[i*256-64:i*256+64, (j+1)
|
120 |
+
* 256-64:(j+1)*256+64], resized_lower_right_slice)
|
121 |
+
|
122 |
+
|
123 |
+
lower_left_upsampled_slice = predicted[counter]
|
124 |
+
counter+=1
|
125 |
+
resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192]
|
126 |
+
np.copyto(
|
127 |
+
output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice)
|
128 |
+
|
129 |
+
resized_output_image = output_image[0:input_height*2, 0:input_width*2]
|
130 |
+
return resized_output_image
|
131 |
+
|
132 |
+
demo = gr.Interface(
|
133 |
+
fn=double_res,
|
134 |
+
title="Double picture resolution",
|
135 |
+
description="Upload a picture and get the horizontal and vertical resolution doubled (4x pixels)",
|
136 |
+
allow_flagging="never",
|
137 |
+
inputs=[
|
138 |
+
gr.inputs.Image(type="numpy")
|
139 |
+
],
|
140 |
+
outputs=gr.Image(type="numpy"))
|
141 |
+
|
142 |
+
demo.launch()
|
143 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
tensorflow
|