Spaces:
Configuration error
Configuration error
Update main.py
Browse files
main.py
CHANGED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.utils import image_dataset_from_directory
|
2 |
+
from tensorflow.keras import Sequential
|
3 |
+
from tensorflow.keras.layers import (
|
4 |
+
Dense,
|
5 |
+
Conv2D,
|
6 |
+
MaxPooling2D,
|
7 |
+
Flatten,
|
8 |
+
BatchNormalization,
|
9 |
+
Dropout,
|
10 |
+
)
|
11 |
+
from utils import plot_accuracy, plot_loss, process
|
12 |
+
import numpy as np
|
13 |
+
from sklearn.metrics import classification_report
|
14 |
+
|
15 |
+
train_ds = image_dataset_from_directory(
|
16 |
+
directory="sports-classification/train",
|
17 |
+
labels="inferred",
|
18 |
+
label_mode="int",
|
19 |
+
batch_size=64,
|
20 |
+
image_size=(256, 256),
|
21 |
+
)
|
22 |
+
|
23 |
+
validation_ds = image_dataset_from_directory(
|
24 |
+
directory="sports-classification/valid",
|
25 |
+
labels="inferred",
|
26 |
+
label_mode="int",
|
27 |
+
batch_size=64,
|
28 |
+
image_size=(256, 256),
|
29 |
+
)
|
30 |
+
|
31 |
+
test_ds = image_dataset_from_directory(
|
32 |
+
directory="sports-classification/test",
|
33 |
+
labels="inferred",
|
34 |
+
label_mode="int",
|
35 |
+
batch_size=64,
|
36 |
+
image_size=(256, 256),
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
train_ds = train_ds.map(process)
|
41 |
+
validation_ds = validation_ds.map(process)
|
42 |
+
test_ds = test_ds.map(process)
|
43 |
+
|
44 |
+
model = Sequential()
|
45 |
+
model.add(
|
46 |
+
Conv2D(
|
47 |
+
128,
|
48 |
+
kernel_size=(3, 3),
|
49 |
+
padding="valid",
|
50 |
+
activation="leaky_relu",
|
51 |
+
input_shape=(256, 256, 3),
|
52 |
+
)
|
53 |
+
)
|
54 |
+
model.add(BatchNormalization())
|
55 |
+
model.add(MaxPooling2D(pool_size=(2, 2), strides=2, padding="valid"))
|
56 |
+
model.add(Conv2D(64, kernel_size=(3, 3), padding="valid", activation="leaky_relu"))
|
57 |
+
model.add(BatchNormalization())
|
58 |
+
model.add(MaxPooling2D(pool_size=(2, 2), strides=2, padding="valid"))
|
59 |
+
model.add(Conv2D(32, kernel_size=(3, 3), padding="valid", activation="leaky_relu"))
|
60 |
+
model.add(BatchNormalization())
|
61 |
+
model.add(MaxPooling2D(pool_size=(2, 2), strides=2, padding="valid"))
|
62 |
+
model.add(Flatten())
|
63 |
+
model.add(Dense(512, activation="leaky_relu"))
|
64 |
+
model.add(Dropout(0.1))
|
65 |
+
model.add(Dense(256, activation="leaky_relu"))
|
66 |
+
model.add(Dropout(0.1))
|
67 |
+
model.add(Dense(128, activation="leaky_relu"))
|
68 |
+
model.add(Dropout(0.1))
|
69 |
+
model.add(Dense(100, activation="softmax"))
|
70 |
+
|
71 |
+
|
72 |
+
model.compile(
|
73 |
+
optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
|
74 |
+
)
|
75 |
+
|
76 |
+
callback = tf.keras.callbacks.EarlyStopping(monitor="loss", patience=2)
|
77 |
+
history = model.fit(
|
78 |
+
train_ds,
|
79 |
+
epochs=50,
|
80 |
+
batch_size=32,
|
81 |
+
callbacks=[callback],
|
82 |
+
validation_data=validation_ds,
|
83 |
+
)
|
84 |
+
|
85 |
+
plot_loss(history)
|
86 |
+
plot_accuracy(history)
|
87 |
+
|
88 |
+
y_pred = np.array([])
|
89 |
+
y_true = np.array([])
|
90 |
+
for x, y in test_ds:
|
91 |
+
y_pred = np.concatenate([y_pred, model.predict_classes(x)])
|
92 |
+
y_true = np.concatenate([y_true, np.argmax(y.numpy(), axis=-1)])
|
93 |
+
|
94 |
+
print("Classification Report: \n", classification_report(y_pred, y_true))
|