File size: 1,167 Bytes
f824ccf
 
d74ac86
 
14f73ef
 
 
 
 
247f8bc
 
 
 
 
 
 
14f73ef
f824ccf
 
 
 
 
 
 
247f8bc
 
f824ccf
247f8bc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from pathlib import Path

import streamlit as st

from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
from transformers import TextClassificationPipeline


@st.cache_data()
def get_pipe():
    model = AutoModelForSequenceClassification.from_pretrained(
        "issai/rembert-sentiment-analysis-polarity-classification-kazakh")
    tokenizer = AutoTokenizer.from_pretrained("issai/rembert-sentiment-analysis-polarity-classification-kazakh")
    return TextClassificationPipeline(model=model, tokenizer=tokenizer)


st.title('KazSandra')
static_folder = Path(__file__).parent / 'static'
assert static_folder.exists()

st.write((static_folder / 'description.txt').read_text())
st.image(str(static_folder / 'kazsandra.jpg'))

input_text = st.text_area('Input text', placeholder='Provide your text', value='Осы кітап қызық сияқты.')
# reviews = ["Бұл бейнефильм маған түк ұнамады.", "Осы кітап қызық сияқты."]
pipe = get_pipe()
# for review in reviews:
if input_text:
    out = pipe(input_text)[0]
    st.text("Label: {label}\nScore: {score}".format(**out))