Update app.py
Browse files
app.py
CHANGED
@@ -14,7 +14,7 @@ logger.info("onnx_asr version: %s", version("onnx_asr"))
|
|
14 |
|
15 |
vad = onnx_asr.load_vad("silero")
|
16 |
|
17 |
-
|
18 |
|
19 |
models_ru = {
|
20 |
name: onnx_asr.load_model(name)
|
@@ -31,12 +31,11 @@ models_ru = {
|
|
31 |
models_en = {
|
32 |
name: onnx_asr.load_model(name)
|
33 |
for name in [
|
34 |
-
"nemo-parakeet-ctc-0.6b",
|
35 |
"nemo-parakeet-tdt-0.6b-v2",
|
36 |
]
|
37 |
}
|
38 |
|
39 |
-
models_vad =
|
40 |
|
41 |
|
42 |
def recognize(audio: tuple[int, np.ndarray], models, language):
|
@@ -69,11 +68,11 @@ def recognize(audio: tuple[int, np.ndarray], models, language):
|
|
69 |
|
70 |
|
71 |
def recognize_ru(audio: tuple[int, np.ndarray]):
|
72 |
-
return recognize(audio, models_ru |
|
73 |
|
74 |
|
75 |
def recognize_en(audio: tuple[int, np.ndarray]):
|
76 |
-
return recognize(audio, models_en |
|
77 |
|
78 |
|
79 |
def recognize_with_vad(audio: tuple[int, np.ndarray], name: str):
|
@@ -136,8 +135,7 @@ with gr.Blocks(title="onnx-asr demo") as demo:
|
|
136 |
# ASR demo using onnx-asr
|
137 |
**[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
|
138 |
The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
|
139 |
-
|
140 |
-
Supports Parakeet TDT 0.6B V2 (En) and GigaAM v2 (Ru) models
|
141 |
(and many other modern [models](https://github.com/istupakov/onnx-asr?tab=readme-ov-file#supported-model-names)).
|
142 |
You can also use it with your own model if it has a supported architecture.
|
143 |
""")
|
@@ -155,12 +153,13 @@ with gr.Blocks(title="onnx-asr demo") as demo:
|
|
155 |
* `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx))
|
156 |
* `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
|
157 |
* `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
|
|
|
158 |
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx))
|
159 |
* `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru))
|
160 |
* `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru))
|
161 |
## English ASR models
|
162 |
-
* `nemo-parakeet-ctc-0.6b` - Nvidia Parakeet CTC 0.6B (en) ([origin](https://huggingface.co/nvidia/parakeet-ctc-0.6b), [onnx](https://huggingface.co/istupakov/parakeet-ctc-0.6b-onnx))
|
163 |
* `nemo-parakeet-tdt-0.6b-v2` - Nvidia Parakeet TDT 0.6B V2 (en) ([origin](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2), [onnx](https://huggingface.co/istupakov/parakeet-tdt-0.6b-v2-onnx))
|
|
|
164 |
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx))
|
165 |
## VAD models
|
166 |
* `silero` - Silero VAD ([origin](https://github.com/snakers4/silero-vad), [onnx](https://huggingface.co/onnx-community/silero-vad))
|
|
|
14 |
|
15 |
vad = onnx_asr.load_vad("silero")
|
16 |
|
17 |
+
models_multilang = {name: onnx_asr.load_model(name) for name in ["whisper-base", "nemo-parakeet-tdt-0.6b-v3"]}
|
18 |
|
19 |
models_ru = {
|
20 |
name: onnx_asr.load_model(name)
|
|
|
31 |
models_en = {
|
32 |
name: onnx_asr.load_model(name)
|
33 |
for name in [
|
|
|
34 |
"nemo-parakeet-tdt-0.6b-v2",
|
35 |
]
|
36 |
}
|
37 |
|
38 |
+
models_vad = models_multilang | models_ru | models_en
|
39 |
|
40 |
|
41 |
def recognize(audio: tuple[int, np.ndarray], models, language):
|
|
|
68 |
|
69 |
|
70 |
def recognize_ru(audio: tuple[int, np.ndarray]):
|
71 |
+
return recognize(audio, models_ru | models_multilang, "ru")
|
72 |
|
73 |
|
74 |
def recognize_en(audio: tuple[int, np.ndarray]):
|
75 |
+
return recognize(audio, models_en | models_multilang, "en")
|
76 |
|
77 |
|
78 |
def recognize_with_vad(audio: tuple[int, np.ndarray], name: str):
|
|
|
135 |
# ASR demo using onnx-asr
|
136 |
**[onnx-asr](https://github.com/istupakov/onnx-asr)** is a Python package for Automatic Speech Recognition using ONNX models.
|
137 |
The package is written in pure Python with minimal dependencies (no `pytorch` or `transformers`).
|
138 |
+
Supports Parakeet TDT 0.6B V2 (En), Parakeet TDT 0.6B V3 (Multilingual) and GigaAM v2 (Ru) models
|
|
|
139 |
(and many other modern [models](https://github.com/istupakov/onnx-asr?tab=readme-ov-file#supported-model-names)).
|
140 |
You can also use it with your own model if it has a supported architecture.
|
141 |
""")
|
|
|
153 |
* `gigaam-v2-rnnt` - Sber GigaAM v2 RNN-T ([origin](https://github.com/salute-developers/GigaAM), [onnx](https://huggingface.co/istupakov/gigaam-v2-onnx))
|
154 |
* `nemo-fastconformer-ru-ctc` - Nvidia FastConformer-Hybrid Large (ru) with CTC decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
|
155 |
* `nemo-fastconformer-ru-rnnt` - Nvidia FastConformer-Hybrid Large (ru) with RNN-T decoder ([origin](https://huggingface.co/nvidia/stt_ru_fastconformer_hybrid_large_pc), [onnx](https://huggingface.co/istupakov/stt_ru_fastconformer_hybrid_large_pc_onnx))
|
156 |
+
* `nemo-parakeet-tdt-0.6b-v3` - Nvidia Parakeet TDT 0.6B V3 (multilingual) ([origin](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3), [onnx](https://huggingface.co/istupakov/parakeet-tdt-0.6b-v3-onnx))
|
157 |
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx))
|
158 |
* `alphacep/vosk-model-ru` - Alpha Cephei Vosk 0.54-ru ([origin](https://huggingface.co/alphacep/vosk-model-ru))
|
159 |
* `alphacep/vosk-model-small-ru` - Alpha Cephei Vosk 0.52-small-ru ([origin](https://huggingface.co/alphacep/vosk-model-small-ru))
|
160 |
## English ASR models
|
|
|
161 |
* `nemo-parakeet-tdt-0.6b-v2` - Nvidia Parakeet TDT 0.6B V2 (en) ([origin](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2), [onnx](https://huggingface.co/istupakov/parakeet-tdt-0.6b-v2-onnx))
|
162 |
+
* `nemo-parakeet-tdt-0.6b-v3` - Nvidia Parakeet TDT 0.6B V3 (multilingual) ([origin](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3), [onnx](https://huggingface.co/istupakov/parakeet-tdt-0.6b-v3-onnx))
|
163 |
* `whisper-base` - OpenAI Whisper Base exported with onnxruntime ([origin](https://huggingface.co/openai/whisper-base), [onnx](https://huggingface.co/istupakov/whisper-base-onnx))
|
164 |
## VAD models
|
165 |
* `silero` - Silero VAD ([origin](https://github.com/snakers4/silero-vad), [onnx](https://huggingface.co/onnx-community/silero-vad))
|