File size: 8,543 Bytes
d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d eeff754 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d 20f74a4 d765f0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import gradio as gr
import fitz
from PIL import Image
import io
import json
import google.generativeai as genai
import os
from dotenv import load_dotenv
load_dotenv()
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
model_vision = genai.GenerativeModel('gemini-pro-vision')
model_text = genai.GenerativeModel("gemini-pro")
INTERMEDIATE_JSON_PATH = "intermediate_data.json"
INTERMEDIATE_JOB_DESC_PATH = "intermediate_job_desc.txt"
# Define a custom theme for the interface
custom_theme = {
"primary_color": "#FF4B4B",
"secondary_color": "#FFD3D3",
"text_color": "#333333",
"background_color": "#FFFFFF",
"container_color": "#F8F8F8",
"border_color": "#EAEAEA",
}
def load_prompt(filename):
"""Function to load a prompt from a file."""
try:
with open(filename, "r") as file:
return file.read()
except Exception as e:
return f"Error loading prompt: {e}"
def process_pdf_and_save_job_desc(pdf_file, job_description):
try:
if not pdf_file:
return None, "No file provided"
doc = fitz.open(stream=pdf_file, filetype="pdf")
# Store results in a list and process all pages
json_data = []
images = [] # List to hold images of each page
for page_num in range(len(doc)):
page = doc.load_page(page_num)
pix = page.get_pixmap()
img_bytes = pix.tobytes("png")
image = Image.open(io.BytesIO(img_bytes))
images.append(image)
# ... Your image processing with the genai model
prompt = load_prompt("prompts/resume_parsing_prompt.txt")
response = model_vision.generate_content([prompt, image])
json_data.append(response.text)
doc.close()
# Store data appropriately (consider a list of JSON objects, or a structured dict)
with open(INTERMEDIATE_JSON_PATH, "w") as json_file:
json.dump(json_data, json_file)
with open(INTERMEDIATE_JOB_DESC_PATH, "w") as file:
file.write(job_description)
return images, json_data # Return the list of images
except fitz.FitzError as e:
return None, f"PDF processing error: {e}"
except Exception as e:
return None, f"An unexpected error occurred: {e}"
def display_json():
try:
with open(INTERMEDIATE_JSON_PATH, "r") as json_file:
json_data = json.load(json_file)
return json.dumps(json_data, indent=4)
except FileNotFoundError:
return "No data available yet. Please run the first tab."
def generate_content_based_on_json(example_functionality):
"""
Placeholder function to demonstrate generating content based on JSON data.
Replace 'example_functionality' with actual logic for generating interview questions,
cover letters, or skill gap analysis.
"""
try:
with open(INTERMEDIATE_JSON_PATH, "r") as json_file:
json_data = json.load(json_file)
with open(INTERMEDIATE_JOB_DESC_PATH, "r") as file:
job_description = file.read()
# Placeholder: Generate content based on JSON data and job description
generated_content = f"Generated content for {example_functionality}."
return generated_content
except Exception as e:
return f"An error occurred: {e}"
def generate_interview_questions():
# Assuming json_data is a string containing JSON data
# Here, you would customize the prompt to include specific details
# from the jsodef generate_interview_questions():
with open(INTERMEDIATE_JSON_PATH, "r") as json_file:
json_data = json.load(json_file)
combined_data = " ".join(json_data) # Combine with spaces(adjust as needed)
prompt = load_prompt("prompts/interview_questions_prompt.txt") + combined_data
responses = model_text.generate_content(prompt)
return responses.text
# Define the new Gradio interface for generating interview questions
interview_interface = gr.Interface(
fn=generate_interview_questions,
inputs=[],
outputs=gr.Textbox(label="Generated Interview Questions"),
title="Generate Interview Questions"
)
def generate_skill_gap_analysis():
try:
# Read the saved resume data (JSON)
with open(INTERMEDIATE_JSON_PATH, "r") as file:
json_data = file.read()
# Read the saved job description
with open(INTERMEDIATE_JOB_DESC_PATH, "r") as file:
job_description = file.read()
# Construct a detailed prompt for the Gemini model
prompt = load_prompt("prompts/skills_gap_prompt.txt").replace(
"job_description", job_description).replace("json_data", json_data)
# Call the Gemini model to generate the skill gap analysis
response = model_text.generate_content(prompt)
# Format and return the skill gap analysis
return response.text
except Exception as e:
return f"An error occurred: {e}"
skill_gap_analysis_interface = gr.Interface(
fn=generate_skill_gap_analysis,
inputs=[], # No inputs
outputs=gr.Textbox(label="Skill Gap Analysis"),
title="Skill Gap Analysis"
)
def generate_cover_letter():
try:
# Read the saved job description
with open(INTERMEDIATE_JOB_DESC_PATH, "r") as file:
job_description = file.read()
# Read the saved resume data (JSON)
with open(INTERMEDIATE_JSON_PATH, "r") as file:
json_data = file.read()
# Create a prompt for the cover letter
prompt = load_prompt("prompts/cover_letter_prompt.txt").replace(
"job_description", job_description).replace("json_data", json_data)
# Generate the cover letter using the model
response = model_text.generate_content(prompt, stream=True)
response.resolve()
return response.text
except Exception as e:
return f"An error occurred: {e}"
# Define the Gradio interface for generating a cover letter
cover_letter_interface = gr.Interface(
fn=generate_cover_letter,
inputs=[],
outputs=gr.Textbox(label="Generated Cover Letter"),
title="Cover Letter Generator"
)
def gradio_pdf_interface(pdf_content, job_description):
images, _ = process_pdf_and_save_job_desc(pdf_content, job_description)
return images # Return the list of images to be displayed in the Gallery
# Define the updated interface for PDF processing
# Define the updated interface for PDF processing with better descriptions
pdf_interface = gr.Interface(
fn=gradio_pdf_interface,
inputs=[
gr.File(type="binary", label="Upload PDF Resume"),
gr.Textbox(label="Job Description", placeholder="Enter the job description here...", lines=5)
],
outputs=gr.Gallery(label="Processed PDF Pages"),
title="PDF Processing and Job Description",
description="Upload a PDF resume and provide the job description. The system will process the resume and extract relevant data. You can navigate through the processed pages below.",
theme=custom_theme
)
json_interface = gr.Interface(
fn=display_json,
inputs=[],
outputs=gr.Textbox(label="Resume Data in JSON", lines=20),
title="Display JSON",
description="View the extracted resume data in JSON format."
)
interview_interface = gr.Interface(
fn=generate_interview_questions,
inputs=[],
outputs=gr.Textbox(label="Generated Interview Questions"),
title="Generate Interview Questions"
)
skill_gap_analysis_interface = gr.Interface(
fn=generate_skill_gap_analysis,
inputs=[],
outputs=gr.Textbox(label="Skill Gap Analysis"),
title="Skill Gap Analysis"
)
cover_letter_interface = gr.Interface(
fn=generate_cover_letter,
inputs=[],
outputs=gr.Textbox(label="Generated Cover Letter"),
title="Cover Letter Generator"
)
# Combine interfaces into a TabbedInterface with improved UI/UX
demo = gr.TabbedInterface(
[pdf_interface, json_interface, interview_interface, skill_gap_analysis_interface, cover_letter_interface],
["Process PDF", "JSON Output", "Interview Questions", "Skill Gap Analysis", "Cover Letter"],
css="""
body { font-family: Arial, sans-serif; }
.tab { font-weight: bold; background-color: #FFD3D3; color: #333333; border-color: #EAEAEA; }
.tab.selected { background-color: #FF4B4B; }
.input_interface { margin-bottom: 15px; }
.output_interface { margin-top: 15px; }
"""
)
if __name__ == "__main__":
demo.launch()
|