import logging import os import time import uuid import gradio as gr import soundfile as sf from model import get_pretrained_model, language_to_models title = "# Next-gen Kaldi: Text-to-speech (TTS)" description = """ This space shows how to convert text to speech with Next-gen Kaldi. It is running on CPU within a docker container provided by Hugging Face. See more information by visiting the following links: - If you want to deploy it locally, please see If you want to use Android APKs, please see If you want to use Android text-to-speech engine APKs, please see If you want to download an all-in-one exe for Windows, please see """ css = """ .result {display:flex;flex-direction:column} .result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%} .result_item_success {background-color:mediumaquamarine;color:white;align-self:start} .result_item_error {background-color:#ff7070;color:white;align-self:start} """ # Simplified examples for Portuguese only examples = [ ["Portuguese", "csukuangfj/vits-mms-por", "Eu desejo uma versão simplificada para português.", 0, 1.0], ] # Use only Portuguese as a language choice language_choices = ["Portuguese"] demo = gr.Blocks(css=css) with demo: gr.Markdown(title) # Use Radio instead of Dropdown for language choice language_radio = gr.Radio( label="Language", choices=language_choices, value=language_choices[0], ) # Initialize model_dropdown with Portuguese models model_dropdown = gr.Dropdown( choices=language_to_models["Portuguese"], label="Select a model", value=language_to_models["Portuguese"][0], ) # No need to update model_dropdown for a single language with gr.Tabs(): with gr.TabItem("Please input your text"): input_text = gr.Textbox( label="Input text", info="Your text", lines=3, placeholder="Please input your text here", ) input_sid = gr.Textbox( label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model", ) input_speed = gr.Slider( minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)", ) input_button = gr.Button("Submit") output_audio = gr.Audio(label="Output") output_info = gr.HTML(label="Info") gr.Examples( examples=examples, fn=process, inputs=[ language_radio, model_dropdown, input_text, input_sid, input_speed, ], outputs=[ output_audio, output_info, ], ) input_button.click( process, inputs=[ language_radio, model_dropdown, input_text, input_sid, input_speed, ], outputs=[ output_audio, output_info, ], ) gr.Markdown(description) def download_espeak_ng_data(): os.system( """ cd /tmp wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2 tar xf espeak-ng-data.tar.bz2 """ ) if __name__ == "__main__": download_espeak_ng_data() formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) demo.launch()