import logging import os import time import uuid import gradio as gr import soundfile as sf from model import get_pretrained_model, language_to_models title = "# Conversão de texto para fala (TTS)" description = """ **Projeto Open Source de Text-to-Speech para Produção de Conteúdo com Inteligência Artificial: Voz Inteligente para Criadores de Cursos e Podcasters** --- **Visão Geral do Projeto:** O projeto Text-to-Speech (TTS) de código aberto visa capacitar criadores de cursos online e podcasters a produzirem conteúdo de alta qualidade através da aplicação de tecnologias avançadas de inteligência artificial. Ao oferecer uma solução robusta e flexível, o projeto busca democratizar o acesso a vozes naturais e envolventes, eliminando barreiras linguísticas e proporcionando uma experiência de aprendizado ou entretenimento mais inclusiva. --- **Objetivos do Projeto:** 1. **Acessibilidade Global:** Tornar a produção de conteúdo acessível a todos, independentemente do idioma ou localização geográfica. 2. **Facilitar a Criação de Cursos Online:** Capacitar educadores a criar cursos envolventes e interativos, melhorando a experiência de aprendizado dos alunos. 3. **Aprimorar Produções de Podcast:** Permitir que podcasters forneçam narrativas cativantes e experiências auditivas excepcionais aos ouvintes. 4. **Desenvolvimento Sustentável:** Fomentar uma comunidade aberta e colaborativa para garantir a evolução contínua do projeto. --- **Como Contribuir:** O projeto Text-to-Speech é totalmente aberto à contribuição da comunidade. Se você é um desenvolvedor, designer, linguista ou entusiasta da inteligência artificial, sua participação é bem-vinda. Contribua com códigos, sugestões de recursos, correções de bugs ou simplesmente compartilhe suas experiências para enriquecer a diversidade de perspectivas. Junte-se a nós na missão de tornar a produção de conteúdo mais acessível, envolvente e impactante com a magia da inteligência artificial aplicada à síntese de voz! """ css = """.result {display:flex;flex-direction:column}.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}.result_item_error {background-color:#ff7070;color:white;align-self:start}""" examples = [["Portuguese", "csukuangfj/vits-mms-por", "Computação é arte.", 0, 1.0]] language_choices = ["Portuguese"] def update_model_dropdown(language): return gr.Dropdown(choices=language_to_models.get(language, []), value=language_to_models.get(language, [""])[0], interactive=True) def build_html_output(s, style="result_item_success"): return f"""
{s}
""" def process(language, repo_id, text, sid, speed): logging.info(f"Input text: {text}. sid: {sid}, speed: {speed}") sid = int(sid) tts = get_pretrained_model(repo_id, speed) start = time.time() audio = tts.generate(text, sid=sid) end = time.time() if len(audio.samples) == 0: raise ValueError("Error in generating audios. Please read previous error messages.") duration = len(audio.samples) / audio.sample_rate elapsed_seconds = end - start rtf = elapsed_seconds / duration info = f"""Wave duration : {duration:.3f} s
Processing time: {elapsed_seconds:.3f} s
RTF: {elapsed_seconds:.3f}/{duration:.3f} = {rtf:.3f}
""" logging.info(info) logging.info(f"\nrepo_id: {repo_id}\ntext: {text}\nsid: {sid}\nspeed: {speed}") filename = str(uuid.uuid4()) + ".wav" sf.write(filename, audio.samples, samplerate=audio.sample_rate, subtype="PCM_16") return filename, build_html_output(info) demo = gr.Blocks(css=css) with demo: gr.Markdown(title) language_radio = gr.Radio(label="Language", choices=language_choices, value=language_choices[0]) model_dropdown = gr.Dropdown(choices=language_to_models["Portuguese"], label="Select a model", value=language_to_models["Portuguese"][0]) language_radio.change(update_model_dropdown, inputs=language_radio, outputs=model_dropdown) with gr.Tabs(): with gr.TabItem("Please input your text"): input_text = gr.Textbox(label="Input text", info="Your text", lines=3, placeholder="Please input your text here") input_sid = gr.Textbox(label="Speaker ID", info="Speaker ID", lines=1, max_lines=1, value="0", placeholder="Speaker ID. Valid only for mult-speaker model") input_speed = gr.Slider(minimum=0.1, maximum=10, value=1, step=0.1, label="Speed (larger->faster; smaller->slower)") input_button = gr.Button("Submit") output_audio = gr.Audio(label="Output") output_info = gr.HTML(label="Info") gr.Examples(examples=examples, fn=process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info]) input_button.click(process, inputs=[language_radio, model_dropdown, input_text, input_sid, input_speed], outputs=[output_audio, output_info]) gr.Markdown(description) def download_espeak_ng_data(): os.system("""cd /tmp; wget -qq https://github.com/k2-fsa/sherpa-onnx/releases/download/tts-models/espeak-ng-data.tar.bz2; tar xf espeak-ng-data.tar.bz2""") if __name__ == "__main__": download_espeak_ng_data() formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" logging.basicConfig(format=formatter, level=logging.INFO) demo.launch()