Tumor-Classification / predict.py
itachi-ai's picture
Upload 6 files
437e081 verified
raw
history blame
766 Bytes
import tensorflow as tf
import tf_keras
model_mri = tf_keras.models.load_model('model')
def load_image_with_path(path):
img = tf.io.read_file(path)
img = tf.image.decode_image(img, channels=3)
img = tf.image.resize(img, size=[256, 256])
img = img / 255.
return img
def makepredictions(path):
print(path)
img = load_image_with_path(path)
predictions = model_mri.predict(tf.expand_dims(img, axis=0))
a = int(tf.argmax(tf.squeeze(predictions)))
if a == 0:
a = "Result : Glioma Tumor"
elif a == 1:
a = "Result : Meningioma Tumor"
elif a == 2:
a = "Result : No Tumor"
else:
a = "Result : Pituitary Tumor"
return a
# {'glioma': 0, 'meningioma': 1, 'notumor': 2, 'pituitary': 3}