import tensorflow as tf import tf_keras model_mri = tf_keras.models.load_model('model') model_xray = tf_keras.models.load_model('xray_resnet_model') def load_image_with_path(path): img = tf.io.read_file(path) img = tf.image.decode_image(img, channels=3) img = tf.image.resize(img, size=[256, 256]) img = img / 255. return img def makepredictions(path): img = load_image_with_path(path) predictions = model_mri.predict(tf.expand_dims(img, axis=0)) a = int(tf.argmax(tf.squeeze(predictions))) if a == 0: a = "Result : Glioma Tumor" elif a == 1: a = "Result : Meningioma Tumor" elif a == 2: a = "Result : No Tumor" else: a = "Result : Pituitary Tumor" return a # {'glioma': 0, 'meningioma': 1, 'notumor': 2, 'pituitary': 3} def xray_predict(path): img = load_image_with_path(path) predications = model_xray.predict(tf.expand_dims(img, axis=0)) a = int(tf.argmax(tf.squeeze(predications))) xray_classes = ['COVID19','NORMAL', 'PNEUMONIA',' TURBERCULOSIS'] a = xray_classes[a] return a # {'COVID19': 0, 'NORMAL': 1, 'PNEUMONIA': 2, 'TURBERCULOSIS': 3}