Spaces:
Sleeping
Sleeping
File size: 1,710 Bytes
3bc7eb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import pickle
import torch
from transformers import AutoTokenizer
import logging
class ArgqClassifier:
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained('neuralmind/bert-base-portuguese-cased', do_lower_case=False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.device = torch.device(device)
logging.info(f"Version: {torch.__version__}")
logging.info(f"Device being used: {device}")
self.models = {
'quality': pickle.load(open('model_cpu.sav', 'rb')),
'clarity': pickle.load(open('model_cla_cpu.sav', 'rb')),
'organization': pickle.load(open('model_org_cpu.sav', 'rb')),
'credibility': pickle.load(open('model_cre_cpu.sav', 'rb')),
'emotional_polarity': pickle.load(open('model_aemp_cpu.sav', 'rb')),
'emotional_intensity': pickle.load(open('model_aemi_cpu.sav', 'rb'))
}
self.max_length = 180
async def classify_text(self, text):
inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length).to(self.device)
model = self.models["quality"]
output = model(**inputs)
pred_labels = torch.argmax(output.logits, 1)
y_pred = pred_labels[0]
return y_pred.item()
async def classify_text_by_aspect(self, text, aspect):
inputs = self.tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=self.max_length).to(self.device)
model = self.models[aspect]
output = model(**inputs)
pred_labels = torch.argmax(output.logits, 1)
y_pred = pred_labels[0]
return y_pred.item() |