Spaces:
Sleeping
Sleeping
# You can find this code for Chainlit python streaming here (https://docs.chainlit.io/concepts/streaming/python) | |
# OpenAI Chat completion | |
import os | |
from openai import AsyncOpenAI # importing openai for API usage | |
import chainlit as cl # importing chainlit for our app | |
from chainlit.prompt import Prompt, PromptMessage # importing prompt tools | |
from chainlit.playground.providers import ChatOpenAI # importing ChatOpenAI tools | |
from dotenv import load_dotenv | |
import asyncio | |
from aimakerspace.text_utils import TextFileLoader, CharacterTextSplitter | |
from aimakerspace.vectordatabase import VectorDatabase | |
from aimakerspace.openai_utils.prompts import ( | |
UserRolePrompt, | |
SystemRolePrompt, | |
AssistantRolePrompt, | |
) | |
load_dotenv() | |
RAQA_PROMPT_TEMPLATE = """ | |
Use the provided context to answer the user's query. | |
You may not answer the user's query unless there is specific context in the following text. | |
If you do not know the answer, or cannot answer, please respond with "I don't know". | |
Context: | |
{context} | |
""" | |
USER_PROMPT_TEMPLATE = """ | |
User Query: | |
{user_query} | |
""" | |
def load_vector_db_from_local_file(file_path="data/KingLear.txt"): | |
"""generates the vector database object base on a local file""" | |
# load text file and split into chunk of documents | |
text_loader = TextFileLoader(file_path) | |
documents = text_loader.load_documents() | |
text_splitter = CharacterTextSplitter() | |
split_documents = text_splitter.split_texts(documents) | |
# initialize vector db and build from list of documents | |
vector_db = VectorDatabase() | |
vector_db = asyncio.run(vector_db.abuild_from_list(split_documents)) | |
return vector_db | |
def get_formatted_prompts(vector_db_retriever: VectorDatabase, user_query: str): | |
raqa_prompt = SystemRolePrompt(RAQA_PROMPT_TEMPLATE) | |
user_prompt = UserRolePrompt(USER_PROMPT_TEMPLATE) | |
context_list = vector_db_retriever.search_by_text(user_query, k=4) | |
context_prompt = "" | |
for context in context_list: | |
context_prompt += context[0] + "\n" | |
formatted_system_prompt = raqa_prompt.create_message(context=context_prompt) | |
formatted_user_prompt = user_prompt.create_message(user_query=user_query) | |
return formatted_system_prompt, formatted_user_prompt | |
# marks a function that will be executed at the start of a user session | |
async def start_chat(): | |
settings = { | |
"model": "gpt-3.5-turbo", | |
"temperature": 0, | |
"max_tokens": 500, | |
"top_p": 1, | |
"frequency_penalty": 0, | |
"presence_penalty": 0, | |
} | |
cl.user_session.set("settings", settings) | |
# marks a function that should be run each time the chatbot receives a message from a user | |
async def main(message: cl.Message): | |
settings = cl.user_session.get("settings") | |
client = AsyncOpenAI() | |
# print(f"This is the message received by the user : {message.content}") | |
# this the loading of the vector database | |
vector_db = load_vector_db_from_local_file() | |
formatted_system_prompt, formatted_user_prompt = list( | |
get_formatted_prompts( | |
vector_db_retriever=vector_db, | |
user_query=message.content | |
) | |
) | |
# print(f"formatted_system_prompt : {formatted_system_prompt}") | |
# print(f"formatted_user_prompt : {formatted_user_prompt}") | |
formatted_messages =[formatted_system_prompt, formatted_user_prompt] | |
msg = cl.Message(content="") | |
# Call OpenAI | |
async for stream_resp in await client.chat.completions.create( | |
messages=formatted_messages, stream=True, **settings | |
): | |
token = stream_resp.choices[0].delta.content | |
if not token: | |
token = "" | |
await msg.stream_token(token) | |
# print(f"This is the message sent by the model : {msg.content}") | |
# Send and close the message stream | |
await msg.send() | |