File size: 5,402 Bytes
b2b64bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
from typing import List

import pinecone
from tqdm.auto import tqdm
from uuid import uuid4
import arxiv

from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings import CacheBackedEmbeddings
from langchain.storage import LocalFileStore
from langchain.vectorstores import Pinecone

INDEX_BATCH_LIMIT = 100

class CharacterTextSplitter:
    def __init__(
        self,
        chunk_size: int = 1000,
        chunk_overlap: int = 200,
    ):
        assert (
            chunk_size > chunk_overlap
        ), "Chunk size must be greater than chunk overlap"

        self.chunk_size = chunk_size
        self.chunk_overlap = chunk_overlap

        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size = self.chunk_size, # the character length of the chunk
            chunk_overlap = self.chunk_overlap, # the character length of the overlap between chunks
            length_function = len, # the length function - in this case, character length (aka the python len() fn.)

        )

    def split(self, text: str) -> List[str]:
        return self.text_splitter.split_text(text)

class ArxivLoader:

    def __init__(self, query : str = "Nuclear Fission", max_results : int = 5, encoding: str = "utf-8"):
        """"""
        self.query = query
        self.max_results = max_results
        
        self.paper_urls = []
        self.documents = []
        self.splitter = CharacterTextSplitter()

    def retrieve_urls(self):
        """"""
        arxiv_client = arxiv.Client()
        search = arxiv.Search(
            query = self.query,
            max_results = self.max_results,
            sort_by = arxiv.SortCriterion.Relevance
        )

        for result in arxiv_client.results(search):
            self.paper_urls.append(result.pdf_url)

    def load_documents(self):
        """"""
        for paper_url in self.paper_urls:
            loader = PyPDFLoader(paper_url)
            
            self.documents.append(loader.load())

    def format_document(self, document):
        """"""
        metadata = {
            'source_document' : document.metadata["source"],
            'page_number' : document.metadata["page"]
        }

        record_texts = self.splitter.split(document.page_content)
        record_metadatas = [{
            "chunk": j, "text": text, **metadata
        } for j, text in enumerate(record_texts)]

        return record_texts, record_metadatas
    
    def main(self):
        """"""
        self.retrieve_urls()
        self.load_documents()


class PineconeIndexer:
    
    def __init__(self, index_name : str = "arxiv-paper-index", metric : str = "cosine", n_dims : int = 1536):
        """"""
        pinecone.init(
            api_key=os.environ["PINECONE_API_KEY"],
            environment=os.environ["PINECONE_ENV"]
            )
        
        if index_name not in pinecone.list_indexes():
            # we create a new index
            pinecone.create_index(
                name=index_name,
                metric=metric,
                dimension=n_dims
            )
        
        self.index = pinecone.Index(index_name)
        self.arxiv_loader = ArxivLoader()


    def load_embedder(self):
        """"""
        store = LocalFileStore("./cache/")
        
        core_embeddings_model = OpenAIEmbeddings()

        self.embedder = CacheBackedEmbeddings.from_bytes_store(
            core_embeddings_model,
            store,
            namespace=core_embeddings_model.model
        )

    def upsert(self, texts, metadatas):
        """"""
        ids = [str(uuid4()) for _ in range(len(texts))]
        embeds = self.embedder.embed_documents(texts)
        self.index.upsert(vectors=zip(ids, embeds, metadatas))

    def index_documents(self, documents, batch_limit : int = INDEX_BATCH_LIMIT):
        """"""
        texts = []
        metadatas = []

        # iterate through your top-level document
        for i in tqdm(range(len(documents))):

            # select single document object
            for page in documents[i] : 

                record_texts, record_metadatas = self.arxiv_loader.format_document(page)

                texts.extend(record_texts)
                metadatas.extend(record_metadatas)
            
                if len(texts) >= batch_limit:
                    self.upsert(texts, metadatas)

                    texts = []
                    metadatas = []

        if len(texts) > 0:
            self.upsert(texts, metadatas)

    def get_vectorstore(self):
        """"""
        return Pinecone(self.index, self.embedder.embed_query, "text")


if __name__ == "__main__":
    
    print("-------------- Loading Arxiv --------------")
    axloader = ArxivLoader()
    axloader.retrieve_urls()
    axloader.load_documents()

    print("\n-------------- Splitting sample doc --------------")
    sample_doc = axloader.documents[0]
    sample_page = sample_doc[0]

    splitter = CharacterTextSplitter()
    chunks = splitter.split(sample_page.page_content)
    print(len(chunks))
    print(chunks[0])

    print("\n-------------- testing pinecode indexer --------------")

    pi = PineconeIndexer()
    pi.load_embedder()
    pi.index_documents(axloader.documents)

    print(pi.index.describe_index_stats())