Spaces:
Runtime error
Runtime error
Initial commit
Browse files- .gitignore +3 -0
- Dockerfile +39 -0
- app/__init__.py +0 -0
- app/app.py +68 -0
- requirements.txt +9 -0
- start.sh +13 -0
.gitignore
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
venv/
|
2 |
+
models/
|
3 |
+
app/__pycache__/
|
Dockerfile
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use an official Python runtime as a parent image
|
2 |
+
FROM python:3.8-slim-buster
|
3 |
+
|
4 |
+
# Define the model name as a build argument
|
5 |
+
ARG MODEL_NAME=WhereIsAI/UAE-Large-V1
|
6 |
+
|
7 |
+
# Set the model name and path as environment variables
|
8 |
+
ENV MODEL_NAME=$MODEL_NAME
|
9 |
+
ENV MODEL_PATH=/models/${MODEL_NAME}
|
10 |
+
|
11 |
+
# Install necessary Python packages
|
12 |
+
COPY requirements.txt /app/requirements.txt
|
13 |
+
RUN pip install --no-cache-dir -r /app/requirements.txt
|
14 |
+
|
15 |
+
# Install Git and Git LFS
|
16 |
+
RUN apt-get update && apt-get install -y git curl
|
17 |
+
RUN curl -s https://packagecloud.io/install/repositories/github/git-lfs/script.deb.sh | bash
|
18 |
+
RUN apt-get install git-lfs
|
19 |
+
RUN git lfs install
|
20 |
+
|
21 |
+
# Clone the model repository and download the large files
|
22 |
+
RUN git clone https://huggingface.co/${MODEL_NAME} /models/${MODEL_NAME}
|
23 |
+
RUN cd /models/${MODEL_NAME} && git lfs pull
|
24 |
+
|
25 |
+
# Remove the onnx directory to reduce image size
|
26 |
+
RUN rm -rf /models/${MODEL_NAME}/onnx
|
27 |
+
|
28 |
+
# Copy your FastAPI app and the start script into the container
|
29 |
+
COPY ./app /app
|
30 |
+
COPY start.sh /start.sh
|
31 |
+
|
32 |
+
# Set the working directory
|
33 |
+
WORKDIR /app
|
34 |
+
|
35 |
+
# Expose the FastAPI port
|
36 |
+
EXPOSE 8080
|
37 |
+
|
38 |
+
# Start the FastAPI server using the start script
|
39 |
+
CMD ["/start.sh"]
|
app/__init__.py
ADDED
File without changes
|
app/app.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from typing import Union, List, Dict, Tuple, Optional
|
4 |
+
from pydantic import BaseModel, Field
|
5 |
+
from angle_emb import AnglE
|
6 |
+
|
7 |
+
class EmbeddingInput(BaseModel):
|
8 |
+
input: Union[List[str], Tuple[str], List[Dict], str] = Field(..., description="The input to be encoded")
|
9 |
+
model: Optional[str] = None
|
10 |
+
encoding_format: Optional[str] = 'float'
|
11 |
+
dimensions: Optional[int] = None
|
12 |
+
user: Optional[str] = None
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Get the model name and path from the environment variables
|
17 |
+
model_name = os.getenv('MODEL_NAME', default='WhereIsAI/UAE-Large-V1')
|
18 |
+
model_path = os.getenv('MODEL_PATH', default='models/WhereIsAI/UAE-Large-V1')
|
19 |
+
|
20 |
+
# Load the model
|
21 |
+
try:
|
22 |
+
angle_model = AnglE.from_pretrained(model_path, pooling_strategy='cls').to('cpu')
|
23 |
+
except Exception as e:
|
24 |
+
print(f"Failed to load model from path {model_path}. Error: {str(e)}")
|
25 |
+
|
26 |
+
@app.get("/")
|
27 |
+
def read_root():
|
28 |
+
return {
|
29 |
+
"model_name": model_name,
|
30 |
+
"model_path": model_path,
|
31 |
+
"message": "Model is up and running",
|
32 |
+
"route_info": {
|
33 |
+
"/": "Returns the model info",
|
34 |
+
"/health": "Returns the health status of the application",
|
35 |
+
"/v1/embeddings": 'POST route to get embeddings. Usage: curl -H "Content-Type: application/json" -d \'{ "input": "Your text string goes here" }\' http://localhost:8080/v1/embeddings'
|
36 |
+
}
|
37 |
+
}
|
38 |
+
|
39 |
+
@app.get("/health")
|
40 |
+
def health_check():
|
41 |
+
return {"health": "ok"}
|
42 |
+
|
43 |
+
@app.post("/v1/embeddings")
|
44 |
+
def get_embeddings(embedding_input: EmbeddingInput):
|
45 |
+
# # Check if the input is an empty string
|
46 |
+
# if not embedding_input.input.strip():
|
47 |
+
# return {
|
48 |
+
# "object": "list",
|
49 |
+
# "data": [],
|
50 |
+
# "model": model_name,
|
51 |
+
# "usage": {"prompt_tokens": 0, "total_tokens": 0},
|
52 |
+
# }
|
53 |
+
|
54 |
+
# Encode the input text using the model
|
55 |
+
embeddings = angle_model.encode(embedding_input.input, embedding_size=embedding_input.dimensions)
|
56 |
+
|
57 |
+
# Create a response format compatible with OpenAI's API
|
58 |
+
response = {
|
59 |
+
"object": "list",
|
60 |
+
"data": [
|
61 |
+
{"object": "embedding", "index": i, "embedding": emb.tolist()}
|
62 |
+
for i, emb in enumerate(embeddings)
|
63 |
+
],
|
64 |
+
"model": model_name,
|
65 |
+
"usage": {"prompt_tokens": len(embedding_input.input), "total_tokens": len(embedding_input.input)},
|
66 |
+
}
|
67 |
+
|
68 |
+
return response
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
gunicorn
|
4 |
+
pydantic
|
5 |
+
angle_emb
|
6 |
+
bitsandbytes
|
7 |
+
datasets
|
8 |
+
transformers
|
9 |
+
wandb
|
start.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# # Get the number of cores
|
4 |
+
# num_cores=$(nproc --all)
|
5 |
+
|
6 |
+
# # Calculate the number of Uvicorn workers
|
7 |
+
# num_workers=$((2 * num_cores + 1))
|
8 |
+
|
9 |
+
# # Set the WEB_CONCURRENCY environment variable
|
10 |
+
# export WEB_CONCURRENCY=$num_workers
|
11 |
+
|
12 |
+
# Start the FastAPI application
|
13 |
+
exec uvicorn app.app:app --host 0.0.0.0 --port 8080
|