Spaces:
Sleeping
Sleeping
File size: 10,387 Bytes
e7e7f2a eeac268 e7e7f2a eeac268 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
# from dataclasses import dataclass, replace
# from functools import reduce
from io import BytesIO
import math
import os
from pprint import pprint
import tempfile
from PIL import Image, ImageDraw, ImageFont
import numpy as np
import cv2
# import seaborn as sns
# import matplotlib.pyplot as plt
# %matplotlib inline
import torch
from torch.utils.data import Dataset
import torchvision
from torchvision import transforms
import roboflow
from roboflow import Roboflow
import supervision as sv
import albumentations as A
import gradio as gr
import requests
# from torchmetrics.detection.mean_ap import MeanAveragePrecision
# from torchmetrics.detection.iou import IntersectionOverUnion
# import evaluate
#from datasets import load_metric
from transformers import pipeline
from transformers import (
AutoProcessor,
AutoImageProcessor,
AutoModel,
AutoModelForObjectDetection,
RTDetrForObjectDetection,
RTDetrImageProcessor,
TrainingArguments,
Trainer
)
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
#@title Utilities
PALETTE = {0: {"color": (255, 0, 0),
"name": "Ambulance"},
1: {"color": (0, 191, 0),
"name": "Firetruck"},
2: {"color": (0, 0, 255),
"name": "Police"},
3: {"color": (255, 0, 255),
"name": "Non-EV"}}
label2id = {val["name"]: id for (id, val) in PALETTE.items()}
id2label = {id: name for (name, id) in label2id.items()}
print(label2id)
print(id2label)
def unnormalize_bbox(img_h, img_w, bbox):
x_min = bbox[0] - bbox[2]/2
y_min = bbox[1] - bbox[3]/2
x_max = bbox[0] + bbox[2]/2 # - x_min
y_max = bbox[1] + bbox[3]/2 # - y_min
x_min *= img_w
y_min *= img_h
x_max *= img_w
y_max *= img_h
x_min, y_min, x_max, y_max = list(map(int, [x_min, y_min, x_max, y_max]))
return (x_min, y_min, x_max, y_max)
def paint_bbox(
image,
annotations,
normalize_labels=True,
normalize_bbox=True,
):
bboxes = annotations["boxes"].tolist()
class_id = annotations["labels"].tolist()
confidences = annotations["scores"].tolist()
painted_img = image.copy() # Wutdehell
for (bbox, label, confidence) in zip(bboxes, class_id, confidences):
label = (label - 1) if normalize_labels else label
if normalize_bbox:
img_h, img_w = image.shape[0], image.shape[1] # H, W, C
x_min, y_min, x_max, y_max = unnormalize_bbox(img_h, img_w, bbox)
print([x_min, y_min, x_max, y_max])
"""
x_min = #int(bbox[0] - bbox[2]/2) # Left
y_min = #int(bbox[1] - bbox[3]/2) # Top
x_max = #int(bbox[0] + bbox[2]/2)
y_max = #int(bbox[1] + bbox[3]/2)
"""
else:
x_min, y_min, x_max, y_max = list(map(int, bbox))
box_color = PALETTE[label]["color"]
label_name = PALETTE[label]["name"]
if confidence != -1:
label_name = f"{label_name} ({confidence:.2f})"
cv2.rectangle(painted_img,
(x_min, y_min),
(x_max, y_max),
color=box_color,
thickness=2)
cv2.rectangle(painted_img,
(x_min, y_min),
(x_min + 5 + len(label_name)*10, y_min + 17),
color=box_color,
thickness=-1)
cv2.putText(painted_img,
label_name,
(x_min + 2, y_min + 12),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.5,
color=(255, 255, 255),
thickness=1)
return painted_img
# Function to calculate Intersection over Union (IoU)
def calculate_iou(truth_bbx, pred_bbx):
# Coordinates of the boxes: [xmin, ymin, xmax, ymax]
x1, y1, x2, y2 = truth_bbx
x1_p, y1_p, x2_p, y2_p = pred_bbx
# Calculate intersection
ixmin = max(x1, x1_p)
iymin = max(y1, y1_p)
ixmax = min(x2, x2_p)
iymax = min(y2, y2_p)
iw = max(0, ixmax - ixmin)
ih = max(0, iymax - iymin)
intersection = iw * ih
area1 = (x2 - x1) * (y2 - y1)
area2 = (x2_p - x1_p) * (y2_p - y1_p)
union = area1 + area2 - intersection
iou = intersection / union if union != 0 else 0
return iou
# Example: emotion_classifier = pipeline("image-classification", model="itsindrabudhik/emotion_classification")
# (Load only once)
DETECTOR = pipeline("object-detection", model="itsindrabudhik/finalProjectCV2425") #later on, change this with out trained modell yesssss (the trained model should be uploaded to hugging face)
tensor_file = hf_hub_download(repo_id="itsindrabudhik/finalProjectCV2425",
filename="model.safetensors")
# Assign classification head weights since that pipeline seems to not handling it
# weights = load_file(tensor_file)
# DETECTOR.model.class_labels_classifier.weight.data = weights["class_labels_classifier.weight"]
# DETECTOR.model.class_labels_classifier.bias.data = weights["class_labels_classifier.bias"]
# del weights
def detect_ev_nev(image, confidence_threshold=0.5, iou_threshold=0.5):
# Run the detector pipeline on the image
results = DETECTOR(image)
# Open the image
if isinstance(image, str): # If the image is a URL or file path
if image.startswith("http"):
response = requests.get(image)
img = Image.open(BytesIO(response.content))
else:
img = Image.open(image)
else:
img = image
# Draw bounding boxes and labels on the image
font_path = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
font = ImageFont.truetype(font_path, size=32)
draw = ImageDraw.Draw(img)
details = [] # Collect details for text output
for result in results:
score = result['score']
label = result['label']
box = result['box']
# Apply confidence threshold
if score < confidence_threshold:
continue
# Filter out low IoU detections
keep = True
for previous_result in results:
if previous_result != result:
prev_box = previous_result['box']
iou = calculate_iou([box['xmin'], box['ymin'], box['xmax'], box['ymax']],
[prev_box['xmin'], prev_box['ymin'], prev_box['xmax'], prev_box['ymax']])
if iou > iou_threshold:
keep = False
break
label_color = PALETTE[label2id[label]]["color"]
if keep:
# Draw the bounding box and label
xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax']
draw.rectangle([xmin, ymin, xmax, ymax], outline="red", width=3)
# Use a larger font size for text
text = f"{label} ({score:.2f})"
# Calculate text bounding box
text_bbox = draw.textbbox((xmin, ymin - 10), text, font=font) # This gives (xmin, ymin, xmax, ymax)
text_width = text_bbox[2] - text_bbox[0] # width of the text box
text_height = text_bbox[3] - text_bbox[1] # height of the text box
# Draw the text on the image (position adjusted)
draw.text((xmin, ymin - text_height - 5), text, fill="red", font=font)
# Add details to the list
details.append({
"Label": label,
"Confidence": f"{score:.2f}",
"Bounding Box": f"({xmin}, {ymin}, {xmax}, {ymax})"
})
details_text = "\n".join([f"Label: {d['Label']}, Confidence: {d['Confidence']}, Box: {d['Bounding Box']}" for d in details])
return img, details_text
def detect_video(video, confidence_threshold=0.5, iou_threshold=0.5):
video_capture = cv2.VideoCapture(video)
fps = video_capture.get(cv2.CAP_PROP_FPS)
frame_width = int(video_capture.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
temp_output = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(temp_output.name, fourcc, fps, (frame_width, frame_height))
details = []
total_frames = 0
detected_frames = 0
while True:
ret, frame = video_capture.read()
if not ret:
break
total_frames += 1
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
annotated_image, frame_details = detect_ev_nev(image, confidence_threshold, iou_threshold)
# Count frames with detections
if frame_details.strip(): # Non-empty details indicate detections
detected_frames += 1
details.append(frame_details)
annotated_frame = cv2.cvtColor(np.array(annotated_image), cv2.COLOR_RGB2BGR)
out.write(annotated_frame)
video_capture.release()
out.release()
details_text = "\n".join(details)
summary = f"Total Frames: {total_frames}, Frames with Detections: {detected_frames}\n" + details_text
return temp_output.name, summary
def detect(file, confidence_threshold=0.5, iou_threshold=0.5):
# Determine if input is an image or video
file_ext = file.name.split(".")[-1].lower()
if file_ext in ["png", "jpg", "jpeg"]:
# Image processing
annotated_image, details = detect_ev_nev(file, confidence_threshold, iou_threshold)
return annotated_image, None, details
elif file_ext in ["mp4", "avi", "mov"]:
# Video processing
processed_video, details = detect_video(file, confidence_threshold, iou_threshold)
return None, processed_video, details
else:
raise ValueError("Unsupported file format. Please upload an image or video.")
interface = gr.Interface(
fn=detect,
inputs=[
gr.File(label="Upload Image or Video", file_types=[".png", ".jpg", ".jpeg", ".mp4", ".avi", ".mov"]),
gr.Slider(0, 1, value=0.5, label="Confidence Threshold"),
gr.Slider(0, 1, value=0.5, label="IoU Threshold"),
],
outputs=[
gr.Image(label="Processed Image"),
gr.Video(label="Generated Video"),
gr.Text(label="Detection Details")
],
title="RT-DETR Object Detection for Images and Videos",
description="Upload an image or video to detect objects using the fine-tuned RT-DETR model. Results include the annotated image/video and detection details."
)
interface.launch(debug=True) |