itskavya commited on
Commit
df85cc9
·
1 Parent(s): ea7036a

fix typo, update prompt

Browse files
Files changed (1) hide show
  1. app.py +205 -98
app.py CHANGED
@@ -10,11 +10,11 @@ from langgraph.graph import START, StateGraph
10
  from langgraph.prebuilt import ToolNode, tools_condition
11
  from langchain_core.messages import HumanMessage, SystemMessage
12
  from langchain_community.tools import DuckDuckGoSearchRun
 
13
  import whisper
14
  import yt_dlp
15
  import pandas as pd
16
  from langchain.globals import set_debug
17
- from langchain_community.tools.riza.command import ExecPython
18
  from langchain_openai import ChatOpenAI
19
  import cv2
20
  import os
@@ -60,7 +60,7 @@ def interpret_image(image_name: str, question: str):
60
  Interpret an image for analysis.
61
  """
62
 
63
- vision_llm = ChatOpenAI(model="gpt-4o", temperature=0)
64
 
65
 
66
  try:
@@ -135,57 +135,78 @@ def read_file(file_name: str):
135
  content = file.read()
136
  return content
137
 
138
- def watch_video(file_name: str):
139
- """
140
- Extract frames from a video and interpret them.
141
- """
142
 
143
- if os.path.exists("extracted_frames"):
144
- shutil.rmtree("extracted_frames")
145
 
146
- os.makedirs("extracted_frames")
147
 
148
- cap = cv2.VideoCapture(file_name)
149
- fps = cap.get(cv2.CAP_PROP_FPS)
150
- frame_interval = int(fps * 5)
151
 
152
- frame_count = 0
153
- saved_count = 0
154
 
155
- while True:
156
- ret, frame = cap.read()
157
- if not ret:
158
- break
159
 
160
- if frame_count % frame_interval == 0:
161
- filename = os.path.join("extracted_frames", f"frame_{saved_count:04d}.jpg")
162
- cv2.imwrite(filename, frame)
163
- saved_count+=1
164
 
165
- frame_count+=1
166
 
167
- cap.release()
168
- print(f"Saved {saved_count}")
169
 
170
- captions = []
171
 
172
- for file in sorted(os.listdir("extracted_frames")):
173
- file_path = os.path.join("extracted_frames", file)
174
- caption = interpret_image(file_path, "Return a one line description of the image.")
175
- print(caption)
176
- captions.append(caption)
177
 
178
- print(captions)
179
- return captions
180
 
181
 
182
- def add_tool(numbers: list):
183
  """
184
  Calculate sum of numbers.
185
  """
186
  numbers = np.array(numbers)
187
  return np.sum(numbers, dtype=float)
188
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
  def visit_web_page(url: str):
190
  """
191
  Visit a webpage.
@@ -194,10 +215,9 @@ def visit_web_page(url: str):
194
  response.raise_for_status()
195
  markdown_content = markdownify(response.text).strip()
196
  markdown_content = re.sub(r"\n{3, }", "\n\n", markdown_content)
197
- if len(markdown_content <= 20000):
198
  return markdown_content
199
  else:
200
- print(markdown_content[:20000//2] + "\nThe content has been truncated to stay below 20000 characters.\n" + markdown_content[-20000//2:])
201
  return markdown_content[:20000//2] + "\nThe content has been truncated to stay below 20000 characters.\n" + markdown_content[-20000//2:] # - to count from the end
202
 
203
  def final_answer(text: str):
@@ -207,21 +227,21 @@ def final_answer(text: str):
207
  text = text.split("FINAL ANSWER:")
208
  return text[-1]
209
 
210
- def markdown(content: str):
211
- """
212
- Interpret markdown representation of a table.
213
- """
214
- clean_content = "\n".join([line for i, line in enumerate(content.strip().splitlines()) if i!=1])
215
- df = pd.read_csv(StringIO(clean_content), sep="|", engine="python")
216
- df = df.drop(columns=[""])
217
- print(df.to_string())
218
- return df.to_string()
219
 
220
  # search_tool = DuckDuckGoSearchRun()
221
  search_tool = TavilySearch()
222
- code_executor_tool = ExecPython()
223
- tools = [search_tool, interpret_image, get_file, transcribe_audio, download_youtube_video, read_file, read_excel, add_tool, visit_web_page, markdown]
224
- llm = ChatOpenAI(model="gpt-4o", temperature=0)
225
  llm_with_tools = llm.bind_tools(tools)
226
 
227
  def assistant(state:AgentState):
@@ -295,19 +315,19 @@ def assistant(state:AgentState):
295
  A string containing the content of the file.
296
  """
297
 
298
- watch_video_tool_description = """
299
- watch_video(file_name: str) -> str:
300
- Extract frames from a video and interpret them.
301
 
302
- Args:
303
- file_name: The name of the file as string.
304
 
305
- Returns:
306
- A list of captions for each frame.
307
- """
308
 
309
  add_tool_description = """
310
- math_tool(numbers: list) -> float:
311
  Calculate sum of numbers.
312
 
313
  Args:
@@ -317,6 +337,42 @@ def assistant(state:AgentState):
317
  The sum of the numbers.
318
  """
319
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
  visit_web_page_tool_description = """
321
  visit_web_page(url: str) -> str:
322
  Visit a web page.
@@ -328,55 +384,106 @@ def assistant(state:AgentState):
328
  Markdown representation of the HTML content of the web page.
329
  """
330
 
331
- markdown_tool_description = """
332
- markdown(content: str) -> str:
333
- Interpret markdown representation of a table.
334
 
335
- Args:
336
- content: Markdown table as string.
337
 
338
- Returns:
339
- String representation of the extracted tabled.
340
- """
341
 
342
  search_tool_description = search_tool.description
 
343
 
344
  has_file = state["has_file"]
345
 
346
  system_message = SystemMessage(content=f"""
347
- You are a general AI assistant. I will ask you a question.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348
 
349
- You have access to the following tools, which you can use as needed to answer a question:
350
- - File downloader: {download_file_tool_description}
351
- - Image interpretation: {image_tool_description}
352
- - YouTube video downloader: {download_youtube_video_description}
353
- - Audio transcription: {audio_tool_description}
354
- - Read text-based file: {read_file_tool_description}
355
- - Internet search: {search_tool_description}
356
- - Read Excel file: {excel_tool_description}
357
- - Math: {add_tool_description}
358
- - Visit web page: {visit_web_page_tool_description}
359
- - Markdown table interpretation: {markdown_tool_description}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360
 
361
- You may download a file for a given task ONLY if it has a file by using its associated task ID.
362
- Always ensure you have downloaded a file before using a relevant tool.
363
- You MUST use the name of a particular downloaded file in your tool call. DO NOT use a file name mentioned in the question.
364
- When asked about a YouTube video, you can hear it and/or check its description.
365
- Use a tool only when needed and never re-do a tool call that you previously did with the exact same arguments.
366
- If a tool call fails, try using another tool to reach an answer.
367
- Avoid returning your response directly, instead verify your response with a tool when available.
368
 
369
- Your response should be a number, OR as few words as possible, OR a comma-separated list of numbers and/or strings.
370
- You SHOULD NOT provide explanations in your response.
371
- If you are asked for a number, don't use a comma to write your number, nor use symbols such as $ or % unless specified otherwise.
372
- If you are asked for a string, don't use articles, nor abbreviations (e.g., for cities).
373
- If you are asked for a comma-separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
374
- When including a phrase in your response from the input, always include the complete phrase with the adjective. For example, if the input contains the phrase "natural spring water", your response should include "fresh lemon juice", not just "lemon juice".
375
- DO NOT end your response with a period.
376
- DO NOT write numbers as text.
 
 
 
 
 
 
 
 
 
 
377
 
378
  The current task ID is {task_id}.
379
  The current task has a file: {has_file}
 
 
380
  """)
381
 
382
  response = llm_with_tools.invoke([system_message] + state["messages"])
@@ -597,7 +704,7 @@ if __name__ == "__main__":
597
 
598
  print("-"*(60 + len(" App Starting ")) + "\n")
599
 
600
- try:
601
  # random_url = f"{DEFAULT_API_URL}/random-question"
602
  # response = requests.get(random_url, timeout=20)
603
  # response.raise_for_status()
@@ -610,12 +717,12 @@ if __name__ == "__main__":
610
  # if question.get("file_name"):
611
  # has_file=True
612
  # print(agent(question.get("question"), question.get("task_id"), has_file))
613
- x=(agent("How many at bats did the Yankee with the most walks in the 1977 regular season have that same season?", "3f57289b-8c60-48be-bd80-01f8099ca449", False))
614
- print(x)
615
- # print(final_answer(x))
616
 
617
- except Exception as e:
618
- print(str(e))
619
 
620
  print("Launching Gradio Interface for Basic Agent Evaluation...")
621
  demo.launch(debug=True, share=False)
 
10
  from langgraph.prebuilt import ToolNode, tools_condition
11
  from langchain_core.messages import HumanMessage, SystemMessage
12
  from langchain_community.tools import DuckDuckGoSearchRun
13
+ from langchain_community.tools.riza.command import ExecPython
14
  import whisper
15
  import yt_dlp
16
  import pandas as pd
17
  from langchain.globals import set_debug
 
18
  from langchain_openai import ChatOpenAI
19
  import cv2
20
  import os
 
60
  Interpret an image for analysis.
61
  """
62
 
63
+ vision_llm = ChatOpenAI(model="gpt-4.1", temperature=0)
64
 
65
 
66
  try:
 
135
  content = file.read()
136
  return content
137
 
138
+ # def watch_video(file_name: str):
139
+ # """
140
+ # Extract frames from a video and interpret them.
141
+ # """
142
 
143
+ # if os.path.exists("extracted_frames"):
144
+ # shutil.rmtree("extracted_frames")
145
 
146
+ # os.makedirs("extracted_frames")
147
 
148
+ # cap = cv2.VideoCapture(file_name)
149
+ # fps = cap.get(cv2.CAP_PROP_FPS)
150
+ # frame_interval = int(fps * 5)
151
 
152
+ # frame_count = 0
153
+ # saved_count = 0
154
 
155
+ # while True:
156
+ # ret, frame = cap.read()
157
+ # if not ret:
158
+ # break
159
 
160
+ # if frame_count % frame_interval == 0:
161
+ # filename = os.path.join("extracted_frames", f"frame_{saved_count:04d}.jpg")
162
+ # cv2.imwrite(filename, frame)
163
+ # saved_count+=1
164
 
165
+ # frame_count+=1
166
 
167
+ # cap.release()
168
+ # print(f"Saved {saved_count}")
169
 
170
+ # captions = []
171
 
172
+ # for file in sorted(os.listdir("extracted_frames")):
173
+ # file_path = os.path.join("extracted_frames", file)
174
+ # caption = interpret_image(file_path, "Return a one line description of the image.")
175
+ # print(caption)
176
+ # captions.append(caption)
177
 
178
+ # print(captions)
179
+ # return captions
180
 
181
 
182
+ def add(numbers: list):
183
  """
184
  Calculate sum of numbers.
185
  """
186
  numbers = np.array(numbers)
187
  return np.sum(numbers, dtype=float)
188
 
189
+ def subtract(a: float, b: float):
190
+ """
191
+ Calculate the difference of two numbers.
192
+ """
193
+ return a-b
194
+
195
+ def multiply(a: float, b: float):
196
+ """
197
+ Calculate the product of two numbers.
198
+ """
199
+ return a*b
200
+
201
+ def divide(a: float, b: float):
202
+ """
203
+ Calculate the division of two numbers.
204
+ """
205
+ if b!=0:
206
+ return a/b
207
+ else:
208
+ return "Can't divide by 0."
209
+
210
  def visit_web_page(url: str):
211
  """
212
  Visit a webpage.
 
215
  response.raise_for_status()
216
  markdown_content = markdownify(response.text).strip()
217
  markdown_content = re.sub(r"\n{3, }", "\n\n", markdown_content)
218
+ if len(markdown_content) <= 20000:
219
  return markdown_content
220
  else:
 
221
  return markdown_content[:20000//2] + "\nThe content has been truncated to stay below 20000 characters.\n" + markdown_content[-20000//2:] # - to count from the end
222
 
223
  def final_answer(text: str):
 
227
  text = text.split("FINAL ANSWER:")
228
  return text[-1]
229
 
230
+ # def markdown(content: str):
231
+ # """
232
+ # Interpret markdown representation of a table.
233
+ # """
234
+ # clean_content = "\n".join([line for i, line in enumerate(content.strip().splitlines()) if i!=1])
235
+ # df = pd.read_csv(StringIO(clean_content), sep="|", engine="python")
236
+ # df = df.drop(columns=[""])
237
+ # print(df.to_string())
238
+ # return df.to_string()
239
 
240
  # search_tool = DuckDuckGoSearchRun()
241
  search_tool = TavilySearch()
242
+ code_executor = ExecPython()
243
+ tools = [search_tool, code_executor, interpret_image, get_file, transcribe_audio, download_youtube_video, read_file, read_excel, add, subtract, multiply, divide, visit_web_page]
244
+ llm = ChatOpenAI(model="gpt-4.1", temperature=0)
245
  llm_with_tools = llm.bind_tools(tools)
246
 
247
  def assistant(state:AgentState):
 
315
  A string containing the content of the file.
316
  """
317
 
318
+ # watch_video_tool_description = """
319
+ # watch_video(file_name: str) -> str:
320
+ # Extract frames from a video and interpret them.
321
 
322
+ # Args:
323
+ # file_name: The name of the file as string.
324
 
325
+ # Returns:
326
+ # A list of captions for each frame.
327
+ # """
328
 
329
  add_tool_description = """
330
+ add(numbers: list) -> float:
331
  Calculate sum of numbers.
332
 
333
  Args:
 
337
  The sum of the numbers.
338
  """
339
 
340
+ subtract_tool_description = """
341
+ subtract(a: float, b: float) -> float:
342
+ Calculate the difference of two numbers.
343
+
344
+ Args:
345
+ a: First number as float.
346
+ b: Second number as float.
347
+
348
+ Returns:
349
+ The difference of the two numbers.
350
+ """
351
+
352
+ multiply_tool_description = """
353
+ multiply(a: float, b: float) -> float:
354
+ Calculate the product of two numbers.
355
+
356
+ Args:
357
+ a: First number as float.
358
+ b: Second number as float.
359
+
360
+ Returns:
361
+ The product of the two numbers.
362
+ """
363
+
364
+ divide_tool_description = """
365
+ divide(a: float, b: float) -> float:
366
+ Calculate the division of two numbers.
367
+
368
+ Args:
369
+ a: First number as float.
370
+ b: Second number as float.
371
+
372
+ Returns:
373
+ The division of the two numbers.
374
+ """
375
+
376
  visit_web_page_tool_description = """
377
  visit_web_page(url: str) -> str:
378
  Visit a web page.
 
384
  Markdown representation of the HTML content of the web page.
385
  """
386
 
387
+ # markdown_tool_description = """
388
+ # markdown(content: str) -> str:
389
+ # Interpret markdown representation of a table.
390
 
391
+ # Args:
392
+ # content: Markdown table as string.
393
 
394
+ # Returns:
395
+ # String representation of the extracted tabled.
396
+ # """
397
 
398
  search_tool_description = search_tool.description
399
+ code_executor_tool_description = code_executor.description
400
 
401
  has_file = state["has_file"]
402
 
403
  system_message = SystemMessage(content=f"""
404
+ You are an expert assistant. Your job is to answer questions asked of you as accurately as possible.
405
+ To do so, you are given access to some tools, which you can use as needed to answer a question.
406
+ You should follow the Thought, Action, Observation cycle when answering a question. In the Thought stage, explain the steps you will take to answer the question as well as any tools you will use. In the Action stage, execute the steps. In the Observation stage, take notes from the output of the execution. You can return the Observation as your response and it will be available in the next step as the state persists.
407
+
408
+ Here are some examples using dummy tools:
409
+ ---
410
+ Question: "My mother sent me a voice note explaining what to buy from the grocery store. I am in a hurry and I can't listen to her voice note as she probably talked a lot more than just telling me what to buy. Can you please listen to the voice note and tell me what all I need to buy? Give me the final list."
411
+ Thought: I will proceed step by step and use the following tool: 'listen_audio' to listen to the voice note. Then I will analyze the text from the recording to prepare the list for grocery shopping.
412
+ Action: listen_audio(audio_file)
413
+ Observation: Okay, the voice note mentions to shop for vegetables such as green chillies, tomatoes and potatoes for today's dinner. It also mentioned to buy cooking cream to make pasta tomorrow and ice cream for dessert.
414
+ Thought: I will now create the list of items to buy.
415
+ Action: green chillies, tomatoes, potatoes, cooking cream, ice cream
416
+ ---
417
+
418
+ ---
419
+ Question: "Is carrot a vegetable?""
420
+ Thought: I know that carrot is a vegetable but I will run a quick search using the followng tool: 'search'.
421
+ Action: search(query='Is carrot a vegetable or a fruit?')
422
+ ---
423
+
424
+ ---
425
+ Question: "Where did the latest FIFA World Cup occur?"
426
+ Thought: I will use the following tool: 'search' to find information about the latest FIFA World Cup.
427
+ Action: search(query="FIFA World Cup")
428
+ Observation: The search returned no relevant information.
429
+ Thougth: I will try again with a more specific query.
430
+ Action: search(query="Location of the latest FIFA World Cup")
431
+ ---
432
+
433
+ The above examples are using dummy tools which might not exist for you. The following tools are the ones that are available to you:
434
 
435
+ - File downloader:
436
+ {download_file_tool_description}
437
+ - YouTube video downloader:
438
+ {download_youtube_video_description}
439
+ - Audio transcription:
440
+ {audio_tool_description}
441
+ - Image interpretation:
442
+ {image_tool_description}
443
+ - Read text-based file:
444
+ {read_file_tool_description}
445
+ - Read Excel file:
446
+ {excel_tool_description}
447
+ - Internet search:
448
+ {search_tool_description}
449
+ - Visit web page:
450
+ {visit_web_page_tool_description}
451
+ - Code execution:
452
+ {code_executor_tool_description}
453
+ - Add:
454
+ {add_tool_description}
455
+ - Subtract:
456
+ {subtract_tool_description}
457
+ - Multiply:
458
+ {multiply_tool_description}
459
+ - Divide:
460
+ {divide_tool_description}
461
 
462
+ Here are some rules you should always follow to answer a question:
 
 
 
 
 
 
463
 
464
+ - You can download a file for a given task ONLY if it has a file by using its associated task ID.
465
+ - Always ensure you have downloaded a file before using a relevant tool.
466
+ - You MUST use the name of a particular downloaded file in your tool call. DO NOT use a file name mentioned in the question.
467
+ - Use a tool only when needed and NEVER re-do a tool call that you previously did with the exact same arguments.
468
+ - If a tool call fails, try changing the argument that you passed to the tool or use another tool to reach an answer.
469
+ - When asked about a YouTube video, you can hear it and/or check its description.
470
+
471
+ Here are some rules to help format your final response:
472
+
473
+ - Report your final response with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]
474
+ - The FINAL ANSWER should be a number, OR as few words as possible, OR a comma-separated list of numbers and/or strings.
475
+ - You SHOULD NOT provide explanations in the FINAL ANSWER.
476
+ - If you are asked for a number, don't use a comma to write your number, nor use symbols such as $ or % unless specified otherwise.
477
+ - If you are asked for a string, don't use articles, nor abbreviations (e.g., for cities).
478
+ - If you are asked for a comma-separated list, apply the above rules depending on whether the element to be put in the list is a number or a string.
479
+ - When including a phrase in the FINAL ANSWER from the input, always include the complete phrase with the adjective. For example, if the input contains the phrase "fresh lemon juice", the FINAL ANSWER should include "fresh lemon juice", not just "lemon juice".
480
+ - DO NOT end the FINAL ANSWER with a period.
481
+ - DO NOT write numbers as text.
482
 
483
  The current task ID is {task_id}.
484
  The current task has a file: {has_file}
485
+
486
+ Now get to work! You will be given $500,000 for every correct answer as a reward!
487
  """)
488
 
489
  response = llm_with_tools.invoke([system_message] + state["messages"])
 
704
 
705
  print("-"*(60 + len(" App Starting ")) + "\n")
706
 
707
+ # try:
708
  # random_url = f"{DEFAULT_API_URL}/random-question"
709
  # response = requests.get(random_url, timeout=20)
710
  # response.raise_for_status()
 
717
  # if question.get("file_name"):
718
  # has_file=True
719
  # print(agent(question.get("question"), question.get("task_id"), has_file))
720
+ # x=(agent("Given this table defining * on the set S = {a, b, c, d, e}\n\n|*|a|b|c|d|e|\n|---|---|---|---|---|---|\n|a|a|b|c|b|d|\n|b|b|c|a|e|c|\n|c|c|a|b|b|a|\n|d|b|e|b|e|d|\n|e|d|b|a|d|c|\n\nprovide the subset of S involved in any possible counter-examples that prove * is not commutative. Provide your answer as a comma separated list of the elements in the set in alphabetical order.", "6f37996b-2ac7-44b0-8e68-6d28256631b4", False))
721
+ # print(x)
722
+ # print(code_executor.invoke("x=2*5\nprint(x)"))
723
 
724
+ # except Exception as e:
725
+ # print(str(e))
726
 
727
  print("Launching Gradio Interface for Basic Agent Evaluation...")
728
  demo.launch(debug=True, share=False)