File size: 5,530 Bytes
df2cf07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
'''ShuffleNetV2 in PyTorch.
See the paper "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" for more details.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class ShuffleBlock(nn.Module):
def __init__(self, groups=2):
super(ShuffleBlock, self).__init__()
self.groups = groups
def forward(self, x):
'''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]'''
N, C, H, W = x.size()
g = self.groups
return x.view(N, g, C//g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W)
class SplitBlock(nn.Module):
def __init__(self, ratio):
super(SplitBlock, self).__init__()
self.ratio = ratio
def forward(self, x):
c = int(x.size(1) * self.ratio)
return x[:, :c, :, :], x[:, c:, :, :]
class BasicBlock(nn.Module):
def __init__(self, in_channels, split_ratio=0.5):
super(BasicBlock, self).__init__()
self.split = SplitBlock(split_ratio)
in_channels = int(in_channels * split_ratio)
self.conv1 = nn.Conv2d(in_channels, in_channels,
kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, in_channels,
kernel_size=3, stride=1, padding=1, groups=in_channels, bias=False)
self.bn2 = nn.BatchNorm2d(in_channels)
self.conv3 = nn.Conv2d(in_channels, in_channels,
kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(in_channels)
self.shuffle = ShuffleBlock()
def forward(self, x):
x1, x2 = self.split(x)
out = F.relu(self.bn1(self.conv1(x2)))
out = self.bn2(self.conv2(out))
out = F.relu(self.bn3(self.conv3(out)))
out = torch.cat([x1, out], 1)
out = self.shuffle(out)
return out
class DownBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super(DownBlock, self).__init__()
mid_channels = out_channels // 2
# left
self.conv1 = nn.Conv2d(in_channels, in_channels,
kernel_size=3, stride=2, padding=1, groups=in_channels, bias=False)
self.bn1 = nn.BatchNorm2d(in_channels)
self.conv2 = nn.Conv2d(in_channels, mid_channels,
kernel_size=1, bias=False)
self.bn2 = nn.BatchNorm2d(mid_channels)
# right
self.conv3 = nn.Conv2d(in_channels, mid_channels,
kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(mid_channels)
self.conv4 = nn.Conv2d(mid_channels, mid_channels,
kernel_size=3, stride=2, padding=1, groups=mid_channels, bias=False)
self.bn4 = nn.BatchNorm2d(mid_channels)
self.conv5 = nn.Conv2d(mid_channels, mid_channels,
kernel_size=1, bias=False)
self.bn5 = nn.BatchNorm2d(mid_channels)
self.shuffle = ShuffleBlock()
def forward(self, x):
# left
out1 = self.bn1(self.conv1(x))
out1 = F.relu(self.bn2(self.conv2(out1)))
# right
out2 = F.relu(self.bn3(self.conv3(x)))
out2 = self.bn4(self.conv4(out2))
out2 = F.relu(self.bn5(self.conv5(out2)))
# concat
out = torch.cat([out1, out2], 1)
out = self.shuffle(out)
return out
class ShuffleNetV2(nn.Module):
def __init__(self, net_size):
super(ShuffleNetV2, self).__init__()
out_channels = configs[net_size]['out_channels']
num_blocks = configs[net_size]['num_blocks']
self.conv1 = nn.Conv2d(3, 24, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(24)
self.in_channels = 24
self.layer1 = self._make_layer(out_channels[0], num_blocks[0])
self.layer2 = self._make_layer(out_channels[1], num_blocks[1])
self.layer3 = self._make_layer(out_channels[2], num_blocks[2])
self.conv2 = nn.Conv2d(out_channels[2], out_channels[3],
kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels[3])
self.linear = nn.Linear(out_channels[3], 10)
def _make_layer(self, out_channels, num_blocks):
layers = [DownBlock(self.in_channels, out_channels)]
for i in range(num_blocks):
layers.append(BasicBlock(out_channels))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
# out = F.max_pool2d(out, 3, stride=2, padding=1)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn2(self.conv2(out)))
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
configs = {
0.5: {
'out_channels': (48, 96, 192, 1024),
'num_blocks': (3, 7, 3)
},
1: {
'out_channels': (116, 232, 464, 1024),
'num_blocks': (3, 7, 3)
},
1.5: {
'out_channels': (176, 352, 704, 1024),
'num_blocks': (3, 7, 3)
},
2: {
'out_channels': (224, 488, 976, 2048),
'num_blocks': (3, 7, 3)
}
}
def test():
net = ShuffleNetV2(net_size=0.5)
x = torch.randn(3, 3, 32, 32)
y = net(x)
print(y.shape)
# test()
|