File size: 5,530 Bytes
df2cf07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
'''ShuffleNetV2 in PyTorch.

See the paper "ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" for more details.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F


class ShuffleBlock(nn.Module):
    def __init__(self, groups=2):
        super(ShuffleBlock, self).__init__()
        self.groups = groups

    def forward(self, x):
        '''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]'''
        N, C, H, W = x.size()
        g = self.groups
        return x.view(N, g, C//g, H, W).permute(0, 2, 1, 3, 4).reshape(N, C, H, W)


class SplitBlock(nn.Module):
    def __init__(self, ratio):
        super(SplitBlock, self).__init__()
        self.ratio = ratio

    def forward(self, x):
        c = int(x.size(1) * self.ratio)
        return x[:, :c, :, :], x[:, c:, :, :]


class BasicBlock(nn.Module):
    def __init__(self, in_channels, split_ratio=0.5):
        super(BasicBlock, self).__init__()
        self.split = SplitBlock(split_ratio)
        in_channels = int(in_channels * split_ratio)
        self.conv1 = nn.Conv2d(in_channels, in_channels,
                               kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(in_channels)
        self.conv2 = nn.Conv2d(in_channels, in_channels,
                               kernel_size=3, stride=1, padding=1, groups=in_channels, bias=False)
        self.bn2 = nn.BatchNorm2d(in_channels)
        self.conv3 = nn.Conv2d(in_channels, in_channels,
                               kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(in_channels)
        self.shuffle = ShuffleBlock()

    def forward(self, x):
        x1, x2 = self.split(x)
        out = F.relu(self.bn1(self.conv1(x2)))
        out = self.bn2(self.conv2(out))
        out = F.relu(self.bn3(self.conv3(out)))
        out = torch.cat([x1, out], 1)
        out = self.shuffle(out)
        return out


class DownBlock(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(DownBlock, self).__init__()
        mid_channels = out_channels // 2
        # left
        self.conv1 = nn.Conv2d(in_channels, in_channels,
                               kernel_size=3, stride=2, padding=1, groups=in_channels, bias=False)
        self.bn1 = nn.BatchNorm2d(in_channels)
        self.conv2 = nn.Conv2d(in_channels, mid_channels,
                               kernel_size=1, bias=False)
        self.bn2 = nn.BatchNorm2d(mid_channels)
        # right
        self.conv3 = nn.Conv2d(in_channels, mid_channels,
                               kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(mid_channels)
        self.conv4 = nn.Conv2d(mid_channels, mid_channels,
                               kernel_size=3, stride=2, padding=1, groups=mid_channels, bias=False)
        self.bn4 = nn.BatchNorm2d(mid_channels)
        self.conv5 = nn.Conv2d(mid_channels, mid_channels,
                               kernel_size=1, bias=False)
        self.bn5 = nn.BatchNorm2d(mid_channels)

        self.shuffle = ShuffleBlock()

    def forward(self, x):
        # left
        out1 = self.bn1(self.conv1(x))
        out1 = F.relu(self.bn2(self.conv2(out1)))
        # right
        out2 = F.relu(self.bn3(self.conv3(x)))
        out2 = self.bn4(self.conv4(out2))
        out2 = F.relu(self.bn5(self.conv5(out2)))
        # concat
        out = torch.cat([out1, out2], 1)
        out = self.shuffle(out)
        return out


class ShuffleNetV2(nn.Module):
    def __init__(self, net_size):
        super(ShuffleNetV2, self).__init__()
        out_channels = configs[net_size]['out_channels']
        num_blocks = configs[net_size]['num_blocks']

        self.conv1 = nn.Conv2d(3, 24, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(24)
        self.in_channels = 24
        self.layer1 = self._make_layer(out_channels[0], num_blocks[0])
        self.layer2 = self._make_layer(out_channels[1], num_blocks[1])
        self.layer3 = self._make_layer(out_channels[2], num_blocks[2])
        self.conv2 = nn.Conv2d(out_channels[2], out_channels[3],
                               kernel_size=1, stride=1, padding=0, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels[3])
        self.linear = nn.Linear(out_channels[3], 10)

    def _make_layer(self, out_channels, num_blocks):
        layers = [DownBlock(self.in_channels, out_channels)]
        for i in range(num_blocks):
            layers.append(BasicBlock(out_channels))
            self.in_channels = out_channels
        return nn.Sequential(*layers)

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        # out = F.max_pool2d(out, 3, stride=2, padding=1)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = F.relu(self.bn2(self.conv2(out)))
        out = F.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out


configs = {
    0.5: {
        'out_channels': (48, 96, 192, 1024),
        'num_blocks': (3, 7, 3)
    },

    1: {
        'out_channels': (116, 232, 464, 1024),
        'num_blocks': (3, 7, 3)
    },
    1.5: {
        'out_channels': (176, 352, 704, 1024),
        'num_blocks': (3, 7, 3)
    },
    2: {
        'out_channels': (224, 488, 976, 2048),
        'num_blocks': (3, 7, 3)
    }
}


def test():
    net = ShuffleNetV2(net_size=0.5)
    x = torch.randn(3, 3, 32, 32)
    y = net(x)
    print(y.shape)


# test()