|
'''DenseNet in PyTorch.''' |
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
def __init__(self, in_planes, growth_rate): |
|
super(Bottleneck, self).__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = nn.Conv2d(in_planes, 4*growth_rate, kernel_size=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(4*growth_rate) |
|
self.conv2 = nn.Conv2d(4*growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) |
|
|
|
def forward(self, x): |
|
out = self.conv1(F.relu(self.bn1(x))) |
|
out = self.conv2(F.relu(self.bn2(out))) |
|
out = torch.cat([out,x], 1) |
|
return out |
|
|
|
|
|
class Transition(nn.Module): |
|
def __init__(self, in_planes, out_planes): |
|
super(Transition, self).__init__() |
|
self.bn = nn.BatchNorm2d(in_planes) |
|
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, bias=False) |
|
|
|
def forward(self, x): |
|
out = self.conv(F.relu(self.bn(x))) |
|
out = F.avg_pool2d(out, 2) |
|
return out |
|
|
|
|
|
class DenseNet(nn.Module): |
|
def __init__(self, block, nblocks, growth_rate=12, reduction=0.5, num_classes=10): |
|
super(DenseNet, self).__init__() |
|
self.growth_rate = growth_rate |
|
|
|
num_planes = 2*growth_rate |
|
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, padding=1, bias=False) |
|
|
|
self.dense1 = self._make_dense_layers(block, num_planes, nblocks[0]) |
|
num_planes += nblocks[0]*growth_rate |
|
out_planes = int(math.floor(num_planes*reduction)) |
|
self.trans1 = Transition(num_planes, out_planes) |
|
num_planes = out_planes |
|
|
|
self.dense2 = self._make_dense_layers(block, num_planes, nblocks[1]) |
|
num_planes += nblocks[1]*growth_rate |
|
out_planes = int(math.floor(num_planes*reduction)) |
|
self.trans2 = Transition(num_planes, out_planes) |
|
num_planes = out_planes |
|
|
|
self.dense3 = self._make_dense_layers(block, num_planes, nblocks[2]) |
|
num_planes += nblocks[2]*growth_rate |
|
out_planes = int(math.floor(num_planes*reduction)) |
|
self.trans3 = Transition(num_planes, out_planes) |
|
num_planes = out_planes |
|
|
|
self.dense4 = self._make_dense_layers(block, num_planes, nblocks[3]) |
|
num_planes += nblocks[3]*growth_rate |
|
|
|
self.bn = nn.BatchNorm2d(num_planes) |
|
self.linear = nn.Linear(num_planes, num_classes) |
|
|
|
def _make_dense_layers(self, block, in_planes, nblock): |
|
layers = [] |
|
for i in range(nblock): |
|
layers.append(block(in_planes, self.growth_rate)) |
|
in_planes += self.growth_rate |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.trans1(self.dense1(out)) |
|
out = self.trans2(self.dense2(out)) |
|
out = self.trans3(self.dense3(out)) |
|
out = self.dense4(out) |
|
out = F.avg_pool2d(F.relu(self.bn(out)), 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
def DenseNet121(): |
|
return DenseNet(Bottleneck, [6,12,24,16], growth_rate=32) |
|
|
|
def DenseNet169(): |
|
return DenseNet(Bottleneck, [6,12,32,32], growth_rate=32) |
|
|
|
def DenseNet201(): |
|
return DenseNet(Bottleneck, [6,12,48,32], growth_rate=32) |
|
|
|
def DenseNet161(): |
|
return DenseNet(Bottleneck, [6,12,36,24], growth_rate=48) |
|
|
|
def densenet_cifar(): |
|
return DenseNet(Bottleneck, [6,12,24,16], growth_rate=12) |
|
|
|
def test(): |
|
net = densenet_cifar() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y) |
|
|
|
|
|
|