|
'''Simplified version of DLA in PyTorch. |
|
|
|
Note this implementation is not identical to the original paper version. |
|
But it seems works fine. |
|
|
|
See dla.py for the original paper version. |
|
|
|
Reference: |
|
Deep Layer Aggregation. https://arxiv.org/abs/1707.06484 |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, |
|
stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion*planes) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class Root(nn.Module): |
|
def __init__(self, in_channels, out_channels, kernel_size=1): |
|
super(Root, self).__init__() |
|
self.conv = nn.Conv2d( |
|
in_channels, out_channels, kernel_size, |
|
stride=1, padding=(kernel_size - 1) // 2, bias=False) |
|
self.bn = nn.BatchNorm2d(out_channels) |
|
|
|
def forward(self, xs): |
|
x = torch.cat(xs, 1) |
|
out = F.relu(self.bn(self.conv(x))) |
|
return out |
|
|
|
|
|
class Tree(nn.Module): |
|
def __init__(self, block, in_channels, out_channels, level=1, stride=1): |
|
super(Tree, self).__init__() |
|
self.root = Root(2*out_channels, out_channels) |
|
if level == 1: |
|
self.left_tree = block(in_channels, out_channels, stride=stride) |
|
self.right_tree = block(out_channels, out_channels, stride=1) |
|
else: |
|
self.left_tree = Tree(block, in_channels, |
|
out_channels, level=level-1, stride=stride) |
|
self.right_tree = Tree(block, out_channels, |
|
out_channels, level=level-1, stride=1) |
|
|
|
def forward(self, x): |
|
out1 = self.left_tree(x) |
|
out2 = self.right_tree(out1) |
|
out = self.root([out1, out2]) |
|
return out |
|
|
|
|
|
class SimpleDLA(nn.Module): |
|
def __init__(self, block=BasicBlock, num_classes=10): |
|
super(SimpleDLA, self).__init__() |
|
self.base = nn.Sequential( |
|
nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(16), |
|
nn.ReLU(True) |
|
) |
|
|
|
self.layer1 = nn.Sequential( |
|
nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(16), |
|
nn.ReLU(True) |
|
) |
|
|
|
self.layer2 = nn.Sequential( |
|
nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.BatchNorm2d(32), |
|
nn.ReLU(True) |
|
) |
|
|
|
self.layer3 = Tree(block, 32, 64, level=1, stride=1) |
|
self.layer4 = Tree(block, 64, 128, level=2, stride=2) |
|
self.layer5 = Tree(block, 128, 256, level=2, stride=2) |
|
self.layer6 = Tree(block, 256, 512, level=1, stride=2) |
|
self.linear = nn.Linear(512, num_classes) |
|
|
|
def forward(self, x): |
|
out = self.base(x) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = self.layer5(out) |
|
out = self.layer6(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def test(): |
|
net = SimpleDLA() |
|
print(net) |
|
x = torch.randn(1, 3, 32, 32) |
|
y = net(x) |
|
print(y.size()) |
|
|
|
|
|
if __name__ == '__main__': |
|
test() |
|
|