|
'''Dual Path Networks in PyTorch.''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Bottleneck(nn.Module): |
|
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): |
|
super(Bottleneck, self).__init__() |
|
self.out_planes = out_planes |
|
self.dense_depth = dense_depth |
|
|
|
self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) |
|
self.bn2 = nn.BatchNorm2d(in_planes) |
|
self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) |
|
|
|
self.shortcut = nn.Sequential() |
|
if first_layer: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(out_planes+dense_depth) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
x = self.shortcut(x) |
|
d = self.out_planes |
|
out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class DPN(nn.Module): |
|
def __init__(self, cfg): |
|
super(DPN, self).__init__() |
|
in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] |
|
num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.last_planes = 64 |
|
self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) |
|
self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) |
|
self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) |
|
self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) |
|
self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)*dense_depth[3], 10) |
|
|
|
def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for i,stride in enumerate(strides): |
|
layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) |
|
self.last_planes = out_planes + (i+2) * dense_depth |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def DPN26(): |
|
cfg = { |
|
'in_planes': (96,192,384,768), |
|
'out_planes': (256,512,1024,2048), |
|
'num_blocks': (2,2,2,2), |
|
'dense_depth': (16,32,24,128) |
|
} |
|
return DPN(cfg) |
|
|
|
def DPN92(): |
|
cfg = { |
|
'in_planes': (96,192,384,768), |
|
'out_planes': (256,512,1024,2048), |
|
'num_blocks': (3,4,20,3), |
|
'dense_depth': (16,32,24,128) |
|
} |
|
return DPN(cfg) |
|
|
|
|
|
def test(): |
|
net = DPN92() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y) |
|
|
|
|
|
|