|
'''MobileNet in PyTorch. |
|
|
|
See the paper "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications" |
|
for more details. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Block(nn.Module): |
|
'''Depthwise conv + Pointwise conv''' |
|
def __init__(self, in_planes, out_planes, stride=1): |
|
super(Block, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=in_planes, bias=False) |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(out_planes) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
return out |
|
|
|
|
|
class MobileNet(nn.Module): |
|
|
|
cfg = [64, (128,2), 128, (256,2), 256, (512,2), 512, 512, 512, 512, 512, (1024,2), 1024] |
|
|
|
def __init__(self, num_classes=10): |
|
super(MobileNet, self).__init__() |
|
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(32) |
|
self.layers = self._make_layers(in_planes=32) |
|
self.linear = nn.Linear(1024, num_classes) |
|
|
|
def _make_layers(self, in_planes): |
|
layers = [] |
|
for x in self.cfg: |
|
out_planes = x if isinstance(x, int) else x[0] |
|
stride = 1 if isinstance(x, int) else x[1] |
|
layers.append(Block(in_planes, out_planes, stride)) |
|
in_planes = out_planes |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layers(out) |
|
out = F.avg_pool2d(out, 2) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def test(): |
|
net = MobileNet() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y.size()) |
|
|
|
|
|
|