|
'''PNASNet in PyTorch. |
|
|
|
Paper: Progressive Neural Architecture Search |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class SepConv(nn.Module): |
|
'''Separable Convolution.''' |
|
def __init__(self, in_planes, out_planes, kernel_size, stride): |
|
super(SepConv, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, out_planes, |
|
kernel_size, stride, |
|
padding=(kernel_size-1)//2, |
|
bias=False, groups=in_planes) |
|
self.bn1 = nn.BatchNorm2d(out_planes) |
|
|
|
def forward(self, x): |
|
return self.bn1(self.conv1(x)) |
|
|
|
|
|
class CellA(nn.Module): |
|
def __init__(self, in_planes, out_planes, stride=1): |
|
super(CellA, self).__init__() |
|
self.stride = stride |
|
self.sep_conv1 = SepConv(in_planes, out_planes, kernel_size=7, stride=stride) |
|
if stride==2: |
|
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn1 = nn.BatchNorm2d(out_planes) |
|
|
|
def forward(self, x): |
|
y1 = self.sep_conv1(x) |
|
y2 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1) |
|
if self.stride==2: |
|
y2 = self.bn1(self.conv1(y2)) |
|
return F.relu(y1+y2) |
|
|
|
class CellB(nn.Module): |
|
def __init__(self, in_planes, out_planes, stride=1): |
|
super(CellB, self).__init__() |
|
self.stride = stride |
|
|
|
self.sep_conv1 = SepConv(in_planes, out_planes, kernel_size=7, stride=stride) |
|
self.sep_conv2 = SepConv(in_planes, out_planes, kernel_size=3, stride=stride) |
|
|
|
self.sep_conv3 = SepConv(in_planes, out_planes, kernel_size=5, stride=stride) |
|
if stride==2: |
|
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn1 = nn.BatchNorm2d(out_planes) |
|
|
|
self.conv2 = nn.Conv2d(2*out_planes, out_planes, kernel_size=1, stride=1, padding=0, bias=False) |
|
self.bn2 = nn.BatchNorm2d(out_planes) |
|
|
|
def forward(self, x): |
|
|
|
y1 = self.sep_conv1(x) |
|
y2 = self.sep_conv2(x) |
|
|
|
y3 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1) |
|
if self.stride==2: |
|
y3 = self.bn1(self.conv1(y3)) |
|
y4 = self.sep_conv3(x) |
|
|
|
b1 = F.relu(y1+y2) |
|
b2 = F.relu(y3+y4) |
|
y = torch.cat([b1,b2], 1) |
|
return F.relu(self.bn2(self.conv2(y))) |
|
|
|
class PNASNet(nn.Module): |
|
def __init__(self, cell_type, num_cells, num_planes): |
|
super(PNASNet, self).__init__() |
|
self.in_planes = num_planes |
|
self.cell_type = cell_type |
|
|
|
self.conv1 = nn.Conv2d(3, num_planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(num_planes) |
|
|
|
self.layer1 = self._make_layer(num_planes, num_cells=6) |
|
self.layer2 = self._downsample(num_planes*2) |
|
self.layer3 = self._make_layer(num_planes*2, num_cells=6) |
|
self.layer4 = self._downsample(num_planes*4) |
|
self.layer5 = self._make_layer(num_planes*4, num_cells=6) |
|
|
|
self.linear = nn.Linear(num_planes*4, 10) |
|
|
|
def _make_layer(self, planes, num_cells): |
|
layers = [] |
|
for _ in range(num_cells): |
|
layers.append(self.cell_type(self.in_planes, planes, stride=1)) |
|
self.in_planes = planes |
|
return nn.Sequential(*layers) |
|
|
|
def _downsample(self, planes): |
|
layer = self.cell_type(self.in_planes, planes, stride=2) |
|
self.in_planes = planes |
|
return layer |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = self.layer5(out) |
|
out = F.avg_pool2d(out, 8) |
|
out = self.linear(out.view(out.size(0), -1)) |
|
return out |
|
|
|
|
|
def PNASNetA(): |
|
return PNASNet(CellA, num_cells=6, num_planes=44) |
|
|
|
def PNASNetB(): |
|
return PNASNet(CellB, num_cells=6, num_planes=32) |
|
|
|
|
|
def test(): |
|
net = PNASNetB() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y) |
|
|
|
|
|
|