|
'''Pre-activation ResNet in PyTorch. |
|
|
|
Reference: |
|
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun |
|
Identity Mappings in Deep Residual Networks. arXiv:1603.05027 |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class PreActBlock(nn.Module): |
|
'''Pre-activation version of the BasicBlock.''' |
|
expansion = 1 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(PreActBlock, self).__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(x)) |
|
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x |
|
out = self.conv1(out) |
|
out = self.conv2(F.relu(self.bn2(out))) |
|
out += shortcut |
|
return out |
|
|
|
|
|
class PreActBottleneck(nn.Module): |
|
'''Pre-activation version of the original Bottleneck module.''' |
|
expansion = 4 |
|
|
|
def __init__(self, in_planes, planes, stride=1): |
|
super(PreActBottleneck, self).__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes) |
|
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False) |
|
|
|
if stride != 1 or in_planes != self.expansion*planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(x)) |
|
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x |
|
out = self.conv1(out) |
|
out = self.conv2(F.relu(self.bn2(out))) |
|
out = self.conv3(F.relu(self.bn3(out))) |
|
out += shortcut |
|
return out |
|
|
|
|
|
class PreActResNet(nn.Module): |
|
def __init__(self, block, num_blocks, num_classes=10): |
|
super(PreActResNet, self).__init__() |
|
self.in_planes = 64 |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
self.linear = nn.Linear(512*block.expansion, num_classes) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes * block.expansion |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = self.conv1(x) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def PreActResNet18(): |
|
return PreActResNet(PreActBlock, [2,2,2,2]) |
|
|
|
def PreActResNet34(): |
|
return PreActResNet(PreActBlock, [3,4,6,3]) |
|
|
|
def PreActResNet50(): |
|
return PreActResNet(PreActBottleneck, [3,4,6,3]) |
|
|
|
def PreActResNet101(): |
|
return PreActResNet(PreActBottleneck, [3,4,23,3]) |
|
|
|
def PreActResNet152(): |
|
return PreActResNet(PreActBottleneck, [3,8,36,3]) |
|
|
|
|
|
def test(): |
|
net = PreActResNet18() |
|
y = net((torch.randn(1,3,32,32))) |
|
print(y.size()) |
|
|
|
|
|
|