|
'''RegNet in PyTorch. |
|
|
|
Paper: "Designing Network Design Spaces". |
|
|
|
Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class SE(nn.Module): |
|
'''Squeeze-and-Excitation block.''' |
|
|
|
def __init__(self, in_planes, se_planes): |
|
super(SE, self).__init__() |
|
self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True) |
|
self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True) |
|
|
|
def forward(self, x): |
|
out = F.adaptive_avg_pool2d(x, (1, 1)) |
|
out = F.relu(self.se1(out)) |
|
out = self.se2(out).sigmoid() |
|
out = x * out |
|
return out |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, w_in, w_out, stride, group_width, bottleneck_ratio, se_ratio): |
|
super(Block, self).__init__() |
|
|
|
w_b = int(round(w_out * bottleneck_ratio)) |
|
self.conv1 = nn.Conv2d(w_in, w_b, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(w_b) |
|
|
|
num_groups = w_b // group_width |
|
self.conv2 = nn.Conv2d(w_b, w_b, kernel_size=3, |
|
stride=stride, padding=1, groups=num_groups, bias=False) |
|
self.bn2 = nn.BatchNorm2d(w_b) |
|
|
|
self.with_se = se_ratio > 0 |
|
if self.with_se: |
|
w_se = int(round(w_in * se_ratio)) |
|
self.se = SE(w_b, w_se) |
|
|
|
self.conv3 = nn.Conv2d(w_b, w_out, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(w_out) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or w_in != w_out: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(w_in, w_out, |
|
kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(w_out) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
if self.with_se: |
|
out = self.se(out) |
|
out = self.bn3(self.conv3(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class RegNet(nn.Module): |
|
def __init__(self, cfg, num_classes=10): |
|
super(RegNet, self).__init__() |
|
self.cfg = cfg |
|
self.in_planes = 64 |
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, |
|
stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.layer1 = self._make_layer(0) |
|
self.layer2 = self._make_layer(1) |
|
self.layer3 = self._make_layer(2) |
|
self.layer4 = self._make_layer(3) |
|
self.linear = nn.Linear(self.cfg['widths'][-1], num_classes) |
|
|
|
def _make_layer(self, idx): |
|
depth = self.cfg['depths'][idx] |
|
width = self.cfg['widths'][idx] |
|
stride = self.cfg['strides'][idx] |
|
group_width = self.cfg['group_width'] |
|
bottleneck_ratio = self.cfg['bottleneck_ratio'] |
|
se_ratio = self.cfg['se_ratio'] |
|
|
|
layers = [] |
|
for i in range(depth): |
|
s = stride if i == 0 else 1 |
|
layers.append(Block(self.in_planes, width, |
|
s, group_width, bottleneck_ratio, se_ratio)) |
|
self.in_planes = width |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = F.adaptive_avg_pool2d(out, (1, 1)) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def RegNetX_200MF(): |
|
cfg = { |
|
'depths': [1, 1, 4, 7], |
|
'widths': [24, 56, 152, 368], |
|
'strides': [1, 1, 2, 2], |
|
'group_width': 8, |
|
'bottleneck_ratio': 1, |
|
'se_ratio': 0, |
|
} |
|
return RegNet(cfg) |
|
|
|
|
|
def RegNetX_400MF(): |
|
cfg = { |
|
'depths': [1, 2, 7, 12], |
|
'widths': [32, 64, 160, 384], |
|
'strides': [1, 1, 2, 2], |
|
'group_width': 16, |
|
'bottleneck_ratio': 1, |
|
'se_ratio': 0, |
|
} |
|
return RegNet(cfg) |
|
|
|
|
|
def RegNetY_400MF(): |
|
cfg = { |
|
'depths': [1, 2, 7, 12], |
|
'widths': [32, 64, 160, 384], |
|
'strides': [1, 1, 2, 2], |
|
'group_width': 16, |
|
'bottleneck_ratio': 1, |
|
'se_ratio': 0.25, |
|
} |
|
return RegNet(cfg) |
|
|
|
|
|
def test(): |
|
net = RegNetX_200MF() |
|
print(net) |
|
x = torch.randn(2, 3, 32, 32) |
|
y = net(x) |
|
print(y.shape) |
|
|
|
|
|
if __name__ == '__main__': |
|
test() |
|
|