itslukeypookie's picture
Upload 26 files
df2cf07 verified
'''RegNet in PyTorch.
Paper: "Designing Network Design Spaces".
Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
class SE(nn.Module):
'''Squeeze-and-Excitation block.'''
def __init__(self, in_planes, se_planes):
super(SE, self).__init__()
self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True)
self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True)
def forward(self, x):
out = F.adaptive_avg_pool2d(x, (1, 1))
out = F.relu(self.se1(out))
out = self.se2(out).sigmoid()
out = x * out
return out
class Block(nn.Module):
def __init__(self, w_in, w_out, stride, group_width, bottleneck_ratio, se_ratio):
super(Block, self).__init__()
# 1x1
w_b = int(round(w_out * bottleneck_ratio))
self.conv1 = nn.Conv2d(w_in, w_b, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(w_b)
# 3x3
num_groups = w_b // group_width
self.conv2 = nn.Conv2d(w_b, w_b, kernel_size=3,
stride=stride, padding=1, groups=num_groups, bias=False)
self.bn2 = nn.BatchNorm2d(w_b)
# se
self.with_se = se_ratio > 0
if self.with_se:
w_se = int(round(w_in * se_ratio))
self.se = SE(w_b, w_se)
# 1x1
self.conv3 = nn.Conv2d(w_b, w_out, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(w_out)
self.shortcut = nn.Sequential()
if stride != 1 or w_in != w_out:
self.shortcut = nn.Sequential(
nn.Conv2d(w_in, w_out,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(w_out)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
if self.with_se:
out = self.se(out)
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class RegNet(nn.Module):
def __init__(self, cfg, num_classes=10):
super(RegNet, self).__init__()
self.cfg = cfg
self.in_planes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(0)
self.layer2 = self._make_layer(1)
self.layer3 = self._make_layer(2)
self.layer4 = self._make_layer(3)
self.linear = nn.Linear(self.cfg['widths'][-1], num_classes)
def _make_layer(self, idx):
depth = self.cfg['depths'][idx]
width = self.cfg['widths'][idx]
stride = self.cfg['strides'][idx]
group_width = self.cfg['group_width']
bottleneck_ratio = self.cfg['bottleneck_ratio']
se_ratio = self.cfg['se_ratio']
layers = []
for i in range(depth):
s = stride if i == 0 else 1
layers.append(Block(self.in_planes, width,
s, group_width, bottleneck_ratio, se_ratio))
self.in_planes = width
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.adaptive_avg_pool2d(out, (1, 1))
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def RegNetX_200MF():
cfg = {
'depths': [1, 1, 4, 7],
'widths': [24, 56, 152, 368],
'strides': [1, 1, 2, 2],
'group_width': 8,
'bottleneck_ratio': 1,
'se_ratio': 0,
}
return RegNet(cfg)
def RegNetX_400MF():
cfg = {
'depths': [1, 2, 7, 12],
'widths': [32, 64, 160, 384],
'strides': [1, 1, 2, 2],
'group_width': 16,
'bottleneck_ratio': 1,
'se_ratio': 0,
}
return RegNet(cfg)
def RegNetY_400MF():
cfg = {
'depths': [1, 2, 7, 12],
'widths': [32, 64, 160, 384],
'strides': [1, 1, 2, 2],
'group_width': 16,
'bottleneck_ratio': 1,
'se_ratio': 0.25,
}
return RegNet(cfg)
def test():
net = RegNetX_200MF()
print(net)
x = torch.randn(2, 3, 32, 32)
y = net(x)
print(y.shape)
if __name__ == '__main__':
test()