|
'''ResNeXt in PyTorch. |
|
|
|
See the paper "Aggregated Residual Transformations for Deep Neural Networks" for more details. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class Block(nn.Module): |
|
'''Grouped convolution block.''' |
|
expansion = 2 |
|
|
|
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1): |
|
super(Block, self).__init__() |
|
group_width = cardinality * bottleneck_width |
|
self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(group_width) |
|
self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) |
|
self.bn2 = nn.BatchNorm2d(group_width) |
|
self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(self.expansion*group_width) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != self.expansion*group_width: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(self.expansion*group_width) |
|
) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = F.relu(self.bn2(self.conv2(out))) |
|
out = self.bn3(self.conv3(out)) |
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class ResNeXt(nn.Module): |
|
def __init__(self, num_blocks, cardinality, bottleneck_width, num_classes=10): |
|
super(ResNeXt, self).__init__() |
|
self.cardinality = cardinality |
|
self.bottleneck_width = bottleneck_width |
|
self.in_planes = 64 |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.layer1 = self._make_layer(num_blocks[0], 1) |
|
self.layer2 = self._make_layer(num_blocks[1], 2) |
|
self.layer3 = self._make_layer(num_blocks[2], 2) |
|
|
|
self.linear = nn.Linear(cardinality*bottleneck_width*8, num_classes) |
|
|
|
def _make_layer(self, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(Block(self.in_planes, self.cardinality, self.bottleneck_width, stride)) |
|
self.in_planes = Block.expansion * self.cardinality * self.bottleneck_width |
|
|
|
self.bottleneck_width *= 2 |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
|
|
out = F.avg_pool2d(out, 8) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def ResNeXt29_2x64d(): |
|
return ResNeXt(num_blocks=[3,3,3], cardinality=2, bottleneck_width=64) |
|
|
|
def ResNeXt29_4x64d(): |
|
return ResNeXt(num_blocks=[3,3,3], cardinality=4, bottleneck_width=64) |
|
|
|
def ResNeXt29_8x64d(): |
|
return ResNeXt(num_blocks=[3,3,3], cardinality=8, bottleneck_width=64) |
|
|
|
def ResNeXt29_32x4d(): |
|
return ResNeXt(num_blocks=[3,3,3], cardinality=32, bottleneck_width=4) |
|
|
|
def test_resnext(): |
|
net = ResNeXt29_2x64d() |
|
x = torch.randn(1,3,32,32) |
|
y = net(x) |
|
print(y.size()) |
|
|
|
|
|
|