|
'''SENet in PyTorch. |
|
|
|
SENet is the winner of ImageNet-2017. The paper is not released yet. |
|
''' |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
def __init__(self, in_planes, planes, stride=1): |
|
super(BasicBlock, self).__init__() |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.shortcut = nn.Sequential() |
|
if stride != 1 or in_planes != planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False), |
|
nn.BatchNorm2d(planes) |
|
) |
|
|
|
|
|
self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) |
|
self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.bn2(self.conv2(out)) |
|
|
|
|
|
w = F.avg_pool2d(out, out.size(2)) |
|
w = F.relu(self.fc1(w)) |
|
w = F.sigmoid(self.fc2(w)) |
|
|
|
out = out * w |
|
|
|
out += self.shortcut(x) |
|
out = F.relu(out) |
|
return out |
|
|
|
|
|
class PreActBlock(nn.Module): |
|
def __init__(self, in_planes, planes, stride=1): |
|
super(PreActBlock, self).__init__() |
|
self.bn1 = nn.BatchNorm2d(in_planes) |
|
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
|
if stride != 1 or in_planes != planes: |
|
self.shortcut = nn.Sequential( |
|
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False) |
|
) |
|
|
|
|
|
self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) |
|
self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(x)) |
|
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x |
|
out = self.conv1(out) |
|
out = self.conv2(F.relu(self.bn2(out))) |
|
|
|
|
|
w = F.avg_pool2d(out, out.size(2)) |
|
w = F.relu(self.fc1(w)) |
|
w = F.sigmoid(self.fc2(w)) |
|
|
|
out = out * w |
|
|
|
out += shortcut |
|
return out |
|
|
|
|
|
class SENet(nn.Module): |
|
def __init__(self, block, num_blocks, num_classes=10): |
|
super(SENet, self).__init__() |
|
self.in_planes = 64 |
|
|
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(64) |
|
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) |
|
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) |
|
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) |
|
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) |
|
self.linear = nn.Linear(512, num_classes) |
|
|
|
def _make_layer(self, block, planes, num_blocks, stride): |
|
strides = [stride] + [1]*(num_blocks-1) |
|
layers = [] |
|
for stride in strides: |
|
layers.append(block(self.in_planes, planes, stride)) |
|
self.in_planes = planes |
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x): |
|
out = F.relu(self.bn1(self.conv1(x))) |
|
out = self.layer1(out) |
|
out = self.layer2(out) |
|
out = self.layer3(out) |
|
out = self.layer4(out) |
|
out = F.avg_pool2d(out, 4) |
|
out = out.view(out.size(0), -1) |
|
out = self.linear(out) |
|
return out |
|
|
|
|
|
def SENet18(): |
|
return SENet(PreActBlock, [2,2,2,2]) |
|
|
|
|
|
def test(): |
|
net = SENet18() |
|
y = net(torch.randn(1,3,32,32)) |
|
print(y.size()) |
|
|
|
|
|
|