itslukeypookie commited on
Commit
52eeb9f
·
verified ·
1 Parent(s): d313edc

disabled wandb

Browse files
Files changed (1) hide show
  1. app.py +4 -7
app.py CHANGED
@@ -9,7 +9,7 @@ import torch.optim as optim
9
  import torch.nn.functional as F
10
  import torch.backends.cudnn as cudnn
11
  import gradio as gr
12
- import wandb
13
  import math
14
  import numpy as np
15
  import matplotlib.pyplot as plt
@@ -74,7 +74,7 @@ def class_names(class_num, class_list): # converts the raw number label to text
74
 
75
  ### MAIN FUNCTION
76
  best_acc = 0
77
- def main(drop_type, epochs_sldr, train_sldr, test_sldr, learning_rate, optimizer, sigma_sldr, adv_attack, username, scheduler):
78
 
79
  ## Input protection
80
  if not drop_type:
@@ -104,9 +104,7 @@ def main(drop_type, epochs_sldr, train_sldr, test_sldr, learning_rate, optimizer
104
  attack = str(adv_attack)
105
  scheduler_choose = str(scheduler)
106
 
107
- # REPLACE ENTITY WITH USERNAME BELOW
108
- wandb.init(entity=username, project="model-training")
109
- wandb.login(key=["a10127d2a41d4e05f8e7a1d3e69d3f719f4657b5"])
110
 
111
  parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
112
  parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
@@ -505,7 +503,6 @@ with gr.Blocks(css=".caption-label {display:none}") as functionApp:
505
  gr.Markdown("## Parameters")
506
  with gr.Row():
507
  inp = gr.Dropdown(choices=names, label="Training Model", value="ResNet18", info="Choose one of 13 common models provided in the dropdown to use for training.")
508
- username = gr.Textbox(label="Weights and Biases", info="Enter your username or team name from the Weights and Biases API.")
509
  epochs_sldr = gr.Slider(label="Number of Epochs", minimum=1, maximum=100, step=1, value=1, info="How many times the model will see the entire dataset during trianing.")
510
  with gr.Column():
511
  setting_radio = gr.Radio(["Basic", "Advanced"], label="Settings", value="Basic")
@@ -539,7 +536,7 @@ with gr.Blocks(css=".caption-label {display:none}") as functionApp:
539
  use_attacks.change(fn=attacks, inputs=use_attacks, outputs=[attack_method, use_sigma, adv_attack])
540
  use_sigma.change(fn=gaussian, inputs=use_sigma, outputs=[sigma_sldr, gaussian_pics])
541
  adv_attack.change(fn=adversarial, inputs=adv_attack, outputs=attack_pics)
542
- btn.click(fn=main, inputs=[inp, epochs_sldr, train_sldr, test_sldr, learning_rate_sldr, optimizer, sigma_sldr, adv_attack, username, scheduler], outputs=[accuracy, pics, allpics, gaussian_pics, attack_pics])
543
 
544
  ## Documentation app (implemented as second tab)
545
 
 
9
  import torch.nn.functional as F
10
  import torch.backends.cudnn as cudnn
11
  import gradio as gr
12
+ #import wandb
13
  import math
14
  import numpy as np
15
  import matplotlib.pyplot as plt
 
74
 
75
  ### MAIN FUNCTION
76
  best_acc = 0
77
+ def main(drop_type, epochs_sldr, train_sldr, test_sldr, learning_rate, optimizer, sigma_sldr, adv_attack, scheduler):
78
 
79
  ## Input protection
80
  if not drop_type:
 
104
  attack = str(adv_attack)
105
  scheduler_choose = str(scheduler)
106
 
107
+ #wandb.init(entity=username, project="model-training")
 
 
108
 
109
  parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
110
  parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
 
503
  gr.Markdown("## Parameters")
504
  with gr.Row():
505
  inp = gr.Dropdown(choices=names, label="Training Model", value="ResNet18", info="Choose one of 13 common models provided in the dropdown to use for training.")
 
506
  epochs_sldr = gr.Slider(label="Number of Epochs", minimum=1, maximum=100, step=1, value=1, info="How many times the model will see the entire dataset during trianing.")
507
  with gr.Column():
508
  setting_radio = gr.Radio(["Basic", "Advanced"], label="Settings", value="Basic")
 
536
  use_attacks.change(fn=attacks, inputs=use_attacks, outputs=[attack_method, use_sigma, adv_attack])
537
  use_sigma.change(fn=gaussian, inputs=use_sigma, outputs=[sigma_sldr, gaussian_pics])
538
  adv_attack.change(fn=adversarial, inputs=adv_attack, outputs=attack_pics)
539
+ btn.click(fn=main, inputs=[inp, epochs_sldr, train_sldr, test_sldr, learning_rate_sldr, optimizer, sigma_sldr, adv_attack, scheduler], outputs=[accuracy, pics, allpics, gaussian_pics, attack_pics])
540
 
541
  ## Documentation app (implemented as second tab)
542