'''Simplified version of DLA in PyTorch. Note this implementation is not identical to the original paper version. But it seems works fine. See dla.py for the original paper version. Reference: Deep Layer Aggregation. https://arxiv.org/abs/1707.06484 ''' import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d( in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class Root(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=1): super(Root, self).__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=(kernel_size - 1) // 2, bias=False) self.bn = nn.BatchNorm2d(out_channels) def forward(self, xs): x = torch.cat(xs, 1) out = F.relu(self.bn(self.conv(x))) return out class Tree(nn.Module): def __init__(self, block, in_channels, out_channels, level=1, stride=1): super(Tree, self).__init__() self.root = Root(2*out_channels, out_channels) if level == 1: self.left_tree = block(in_channels, out_channels, stride=stride) self.right_tree = block(out_channels, out_channels, stride=1) else: self.left_tree = Tree(block, in_channels, out_channels, level=level-1, stride=stride) self.right_tree = Tree(block, out_channels, out_channels, level=level-1, stride=1) def forward(self, x): out1 = self.left_tree(x) out2 = self.right_tree(out1) out = self.root([out1, out2]) return out class SimpleDLA(nn.Module): def __init__(self, block=BasicBlock, num_classes=10): super(SimpleDLA, self).__init__() self.base = nn.Sequential( nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(16), nn.ReLU(True) ) self.layer1 = nn.Sequential( nn.Conv2d(16, 16, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(16), nn.ReLU(True) ) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(True) ) self.layer3 = Tree(block, 32, 64, level=1, stride=1) self.layer4 = Tree(block, 64, 128, level=2, stride=2) self.layer5 = Tree(block, 128, 256, level=2, stride=2) self.layer6 = Tree(block, 256, 512, level=1, stride=2) self.linear = nn.Linear(512, num_classes) def forward(self, x): out = self.base(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.layer5(out) out = self.layer6(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def test(): net = SimpleDLA() print(net) x = torch.randn(1, 3, 32, 32) y = net(x) print(y.size()) if __name__ == '__main__': test()