'''RegNet in PyTorch. Paper: "Designing Network Design Spaces". Reference: https://github.com/keras-team/keras-applications/blob/master/keras_applications/efficientnet.py ''' import torch import torch.nn as nn import torch.nn.functional as F class SE(nn.Module): '''Squeeze-and-Excitation block.''' def __init__(self, in_planes, se_planes): super(SE, self).__init__() self.se1 = nn.Conv2d(in_planes, se_planes, kernel_size=1, bias=True) self.se2 = nn.Conv2d(se_planes, in_planes, kernel_size=1, bias=True) def forward(self, x): out = F.adaptive_avg_pool2d(x, (1, 1)) out = F.relu(self.se1(out)) out = self.se2(out).sigmoid() out = x * out return out class Block(nn.Module): def __init__(self, w_in, w_out, stride, group_width, bottleneck_ratio, se_ratio): super(Block, self).__init__() # 1x1 w_b = int(round(w_out * bottleneck_ratio)) self.conv1 = nn.Conv2d(w_in, w_b, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(w_b) # 3x3 num_groups = w_b // group_width self.conv2 = nn.Conv2d(w_b, w_b, kernel_size=3, stride=stride, padding=1, groups=num_groups, bias=False) self.bn2 = nn.BatchNorm2d(w_b) # se self.with_se = se_ratio > 0 if self.with_se: w_se = int(round(w_in * se_ratio)) self.se = SE(w_b, w_se) # 1x1 self.conv3 = nn.Conv2d(w_b, w_out, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(w_out) self.shortcut = nn.Sequential() if stride != 1 or w_in != w_out: self.shortcut = nn.Sequential( nn.Conv2d(w_in, w_out, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(w_out) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) if self.with_se: out = self.se(out) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out class RegNet(nn.Module): def __init__(self, cfg, num_classes=10): super(RegNet, self).__init__() self.cfg = cfg self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(0) self.layer2 = self._make_layer(1) self.layer3 = self._make_layer(2) self.layer4 = self._make_layer(3) self.linear = nn.Linear(self.cfg['widths'][-1], num_classes) def _make_layer(self, idx): depth = self.cfg['depths'][idx] width = self.cfg['widths'][idx] stride = self.cfg['strides'][idx] group_width = self.cfg['group_width'] bottleneck_ratio = self.cfg['bottleneck_ratio'] se_ratio = self.cfg['se_ratio'] layers = [] for i in range(depth): s = stride if i == 0 else 1 layers.append(Block(self.in_planes, width, s, group_width, bottleneck_ratio, se_ratio)) self.in_planes = width return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.adaptive_avg_pool2d(out, (1, 1)) out = out.view(out.size(0), -1) out = self.linear(out) return out def RegNetX_200MF(): cfg = { 'depths': [1, 1, 4, 7], 'widths': [24, 56, 152, 368], 'strides': [1, 1, 2, 2], 'group_width': 8, 'bottleneck_ratio': 1, 'se_ratio': 0, } return RegNet(cfg) def RegNetX_400MF(): cfg = { 'depths': [1, 2, 7, 12], 'widths': [32, 64, 160, 384], 'strides': [1, 1, 2, 2], 'group_width': 16, 'bottleneck_ratio': 1, 'se_ratio': 0, } return RegNet(cfg) def RegNetY_400MF(): cfg = { 'depths': [1, 2, 7, 12], 'widths': [32, 64, 160, 384], 'strides': [1, 1, 2, 2], 'group_width': 16, 'bottleneck_ratio': 1, 'se_ratio': 0.25, } return RegNet(cfg) def test(): net = RegNetX_200MF() print(net) x = torch.randn(2, 3, 32, 32) y = net(x) print(y.shape) if __name__ == '__main__': test()