|
import os |
|
os.system('git clone https://github.com/facebookresearch/detectron2.git') |
|
os.system('pip install -e detectron2') |
|
os.system("git clone https://github.com/microsoft/unilm.git") |
|
os.system("sed -i 's/from collections import Iterable/from collections.abc import Iterable/' unilm/dit/object_detection/ditod/table_evaluation/data_structure.py") |
|
os.system("curl -LJ -o publaynet_dit-b_cascade.pth 'https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth?sv=2022-11-02&ss=b&srt=o&sp=r&se=2033-06-08T16:48:15Z&st=2023-06-08T08:48:15Z&spr=https&sig=a9VXrihTzbWyVfaIDlIT1Z0FoR1073VB0RLQUMuudD4%3D'") |
|
|
|
import sys |
|
sys.path.append("unilm") |
|
sys.path.append("detectron2") |
|
|
|
import cv2 |
|
|
|
from unilm.dit.object_detection.ditod import add_vit_config |
|
|
|
import torch |
|
|
|
from detectron2.config import CfgNode as CN |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import ColorMode, Visualizer |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.engine import DefaultPredictor |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
import gradio as gr |
|
|
|
|
|
|
|
cfg = get_cfg() |
|
add_vit_config(cfg) |
|
cfg.merge_from_file("cascade_dit_base.yml") |
|
|
|
|
|
filepath = hf_hub_download(repo_id="Sebas6k/DiT_weights", filename="publaynet_dit-b_cascade.pth", repo_type="model") |
|
cfg.MODEL.WEIGHTS = filepath |
|
|
|
|
|
cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
predictor = DefaultPredictor(cfg) |
|
|
|
|
|
def analyze_image(img): |
|
img = img.astype("float32") |
|
md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) |
|
if cfg.DATASETS.TEST[0]=='icdar2019_test': |
|
md.set(thing_classes=["table"]) |
|
else: |
|
md.set(thing_classes=["text","title","list","table","figure"]) |
|
|
|
output = predictor(img)["instances"] |
|
v = Visualizer(img[:, :, ::-1], |
|
md, |
|
scale=1.0, |
|
instance_mode=ColorMode.SEGMENTATION) |
|
result = v.draw_instance_predictions(output.to("cpu")) |
|
result_image = result.get_image()[:, :, ::-1] |
|
|
|
return result_image |
|
|
|
title = "Document Layout Analysis" |
|
description = "Demo" |
|
article = "" |
|
|
|
examples = [ |
|
['publaynet_example.jpeg'], |
|
['PMC1064093_00000.jpg'], |
|
['PMC1064139_00005.jpg'], |
|
['PMC1079928_00003.jpg'], |
|
['PMC1097753_00002.jpg'] |
|
] |
|
css = ".output-image, .input-image, .image-preview {height: 600px !important}" |
|
|
|
iface = gr.Interface(fn=analyze_image, |
|
inputs=gr.Image(type="numpy", label="document image"), |
|
outputs=gr.Image(type="numpy", label="annotated document"), |
|
title=title, |
|
description=description, |
|
examples=examples, |
|
article=article, |
|
css=css) |
|
iface.queue(5).launch() |