|
import streamlit as st
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
from model import classifySentiment,groupClassifier
|
|
|
|
|
|
st.title("🔍 Análisis de Sentimiento para Empresas")
|
|
|
|
option = st.sidebar.selectbox("Elige una opción", ["Analizar un comentario", "Subir archivo CSV"])
|
|
|
|
|
|
if option == "Analizar un comentario":
|
|
user_input = st.text_area("Escribe un comentario:")
|
|
if st.button("Analizar"):
|
|
original_text ,sentiment = classifySentiment(user_input)
|
|
st.write(f"📊 Sentimiento: {sentiment}")
|
|
|
|
elif option == "Subir archivo CSV":
|
|
file = st.file_uploader("Sube un archivo con comentarios en formato csv", type=["csv"])
|
|
if file:
|
|
try:
|
|
df = pd.read_csv(file,sep=None, engine="python")
|
|
clasification = groupClassifier(df)
|
|
clasified_data = pd.DataFrame(clasification)
|
|
plt.figure(figsize=(6,4))
|
|
sns.countplot(x=clasified_data["label"], hue=clasified_data["label"], palette="pastel", legend=False)
|
|
|
|
|
|
plt.xlabel("Sentiment category")
|
|
plt.ylabel("number of texts")
|
|
plt.title("Data distribution")
|
|
|
|
st.pyplot(plt)
|
|
except ValueError as e:
|
|
print(f"Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|