File size: 5,530 Bytes
9956e82
 
8300a07
9956e82
 
 
 
 
 
 
8bffba6
 
 
 
 
 
 
 
 
8300a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c7178f
 
 
 
 
 
 
 
 
 
d8534b1
 
8300a07
 
 
 
 
 
9956e82
 
 
 
 
 
8300a07
 
 
 
 
 
 
 
 
 
9956e82
 
 
 
 
8300a07
 
 
 
 
 
 
9956e82
 
 
8300a07
 
0c7178f
 
8300a07
d8534b1
 
9956e82
8300a07
8bffba6
8300a07
 
 
b7f0220
8bffba6
 
d8534b1
 
8bffba6
d8534b1
8bffba6
bf4737a
b7f0220
 
8bffba6
 
d8534b1
 
8bffba6
d8534b1
8bffba6
bf4737a
8bffba6
 
 
d8534b1
8300a07
8bffba6
d8534b1
9956e82
 
 
 
 
 
d8534b1
 
 
582ac5d
d8534b1
 
9956e82
 
d8534b1
9956e82
d8534b1
9956e82
 
6d4d50b
7e157d8
6d4d50b
 
 
 
 
 
9956e82
 
d8534b1
 
9956e82
8bffba6
9956e82
 
 
 
 
8bffba6
9956e82
 
8bffba6
9956e82
 
0c7178f
8bffba6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
import codecs
import re
from pathlib import Path

import numpy as np
import soundfile as sf
import tomli
from cached_path import cached_path

from model import DiT, UNetT
from model.utils_infer import (
    load_vocoder,
    load_model,
    preprocess_ref_audio_text,
    infer_process,
    remove_silence_for_generated_wav,
)


parser = argparse.ArgumentParser(
    prog="python3 inference-cli.py",
    description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
    epilog="Specify  options above  to override  one or more settings from config.",
)
parser.add_argument(
    "-c",
    "--config",
    help="Configuration file. Default=cli-config.toml",
    default="inference-cli.toml",
)
parser.add_argument(
    "-m",
    "--model",
    help="F5-TTS | E2-TTS",
)
parser.add_argument(
    "-p",
    "--ckpt_file",
    help="The Checkpoint .pt",
)
parser.add_argument(
    "-v",
    "--vocab_file",
    help="The vocab .txt",
)
parser.add_argument("-r", "--ref_audio", type=str, help="Reference audio file < 15 seconds.")
parser.add_argument("-s", "--ref_text", type=str, default="666", help="Subtitle for the reference audio.")
parser.add_argument(
    "-t",
    "--gen_text",
    type=str,
    help="Text to generate.",
)
parser.add_argument(
    "-f",
    "--gen_file",
    type=str,
    help="File with text to generate. Ignores --text",
)
parser.add_argument(
    "-o",
    "--output_dir",
    type=str,
    help="Path to output folder..",
)
parser.add_argument(
    "--remove_silence",
    help="Remove silence.",
)
parser.add_argument(
    "--load_vocoder_from_local",
    action="store_true",
    help="load vocoder from local. Default: ../checkpoints/charactr/vocos-mel-24khz",
)
args = parser.parse_args()

config = tomli.load(open(args.config, "rb"))

ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
gen_file = args.gen_file if args.gen_file else config["gen_file"]
if gen_file:
    gen_text = codecs.open(gen_file, "r", "utf-8").read()
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
ckpt_file = args.ckpt_file if args.ckpt_file else ""
vocab_file = args.vocab_file if args.vocab_file else ""
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir) / "out.wav"
spectrogram_path = Path(output_dir) / "out.png"
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"

vocos = load_vocoder(is_local=args.load_vocoder_from_local, local_path=vocos_local_path)


# load models
if model == "F5-TTS":
    model_cls = DiT
    model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
    if ckpt_file == "":
        repo_name = "F5-TTS"
        exp_name = "F5TTS_Base"
        ckpt_step = 1200000
        ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
        # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt"  # .pt | .safetensors; local path

elif model == "E2-TTS":
    model_cls = UNetT
    model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
    if ckpt_file == "":
        repo_name = "E2-TTS"
        exp_name = "E2TTS_Base"
        ckpt_step = 1200000
        ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
        # ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt"  # .pt | .safetensors; local path

print(f"Using {model}...")
ema_model = load_model(model_cls, model_cfg, ckpt_file, vocab_file)


def main_process(ref_audio, ref_text, text_gen, model_obj, remove_silence):
    main_voice = {"ref_audio": ref_audio, "ref_text": ref_text}
    if "voices" not in config:
        voices = {"main": main_voice}
    else:
        voices = config["voices"]
        voices["main"] = main_voice
    for voice in voices:
        voices[voice]["ref_audio"], voices[voice]["ref_text"] = preprocess_ref_audio_text(
            voices[voice]["ref_audio"], voices[voice]["ref_text"]
        )
        print("Voice:", voice)
        print("Ref_audio:", voices[voice]["ref_audio"])
        print("Ref_text:", voices[voice]["ref_text"])

    generated_audio_segments = []
    reg1 = r"(?=\[\w+\])"
    chunks = re.split(reg1, text_gen)
    reg2 = r"\[(\w+)\]"
    for text in chunks:
        match = re.match(reg2, text)
        if match:
            voice = match[1]
        else:
            print("No voice tag found, using main.")
            voice = "main"
        if voice not in voices:
            print(f"Voice {voice} not found, using main.")
            voice = "main"
        text = re.sub(reg2, "", text)
        gen_text = text.strip()
        ref_audio = voices[voice]["ref_audio"]
        ref_text = voices[voice]["ref_text"]
        print(f"Voice: {voice}")
        audio, final_sample_rate, spectragram = infer_process(ref_audio, ref_text, gen_text, model_obj)
        generated_audio_segments.append(audio)

    if generated_audio_segments:
        final_wave = np.concatenate(generated_audio_segments)
        with open(wave_path, "wb") as f:
            sf.write(f.name, final_wave, final_sample_rate)
            # Remove silence
            if remove_silence:
                remove_silence_for_generated_wav(f.name)
            print(f.name)


main_process(ref_audio, ref_text, gen_text, ema_model, remove_silence)