File size: 5,652 Bytes
6ed1df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca0820a
6ed1df5
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import streamlit as st
from datasets import load_dataset
import json
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import networkx as nx
from pyvis.network import Network
import streamlit.components.v1 as components

# main layout
HEIGHT = 800
st.set_page_config(layout="wide")
st.title("Reddit mental map 🧠")
col1, col2, col3 = st.columns([1, 1, 2])
with col2:
    upper_panel = st.container()
    middle_panel = st.container()
    lower_panel = st.container()

st.sidebar.title("Reddit mental map 🧠")

st.sidebar.write("This app is a mental map of Reddit posts related to:")
st.sidebar.markdown(
    """
                    - Attention-deficit/hyperactivity disorder (ADHD)
                    - Aspergers
                    - Depression
                    - Obsessive-compulsive disorder (OCD)
                    - Post-traumatic stress disorder (PTSD)
    """
)

st.sidebar.write(
    "The map aims to display a glimpse of :red-background[personal point of views of people who navigate through their mental wellbeing journey]."
)

st.sidebar.header("Update mental map ✨")
condition = st.sidebar.selectbox(
    "Select a condition", ["ADHD", "Aspergers", "Depression", "OCD", "PTSD"]
)

st.sidebar.header("References:")
st.sidebar.markdown(
    "Hugging Face datasets: [reddit_mental_health_posts] (https://huggingface.co/datasets/solomonk/reddit_mental_health_posts)"
)
st.sidebar.markdown(
    "Semantic role labeling code adapted from [FS Ndzomga's Medium] (https://medium.com/thoughts-on-machine-learning/building-knowledge-graphs-with-spacy-networkx-and-matplotlib-a-glimpse-into-semantic-role-e49c9dbe26b4)"
)

# data loader
dataset = load_dataset("solomonk/reddit_mental_health_posts")
df = dataset["train"].to_pandas()

if condition == "ADHD":
    df = df[df["subreddit"] == "ADHD"]
    json_file = "data/adhd_clean.json"
elif condition == "Aspergers":
    df = df[df["subreddit"] == "aspergers"]
    json_file = "data/aspergers_clean.json"
elif condition == "Depression":
    df = df[df["subreddit"] == "depression"]
    json_file = "data/depression_clean.json"
elif condition == "OCD":
    df = df[df["subreddit"] == "OCD"]
    json_file = "data/ocd_clean.json"
elif condition == "PTSD":
    df = df[df["subreddit"] == "ptsd"]
    json_file = "data/ptsd_clean.json"

with open(json_file, "r") as f:  # Change by diagnosis
    srl_results = json.load(f)

subjects = " ".join(
    value for d in srl_results if "subjects" in d for value in d["subjects"]
)
verbs = " ".join(value for d in srl_results if "verbs" in d for value in d["verbs"])
objects = " ".join(
    value for d in srl_results if "objects" in d for value in d["objects"]
)

# dataframe
with col1:
    body = df["body"][~df["body"].isin(["[removed]", "[deleted]"])]
    event = st.dataframe(
        body,
        use_container_width=True,
        height=HEIGHT,
        hide_index=True,
        on_select="rerun",
        selection_mode="single-row",
    )


# word cloud
stopwords = [
    "day",
    "hour",
    "hours",
    "know",
    "month",
    "talk",
    "thing",
    "things",
    "think",
    "time",
    "try",
    "want",
    "year",
]


def generate_better_wordcloud(data, mask=None):
    cloud = WordCloud(
        scale=3,
        max_words=150,
        colormap="RdGy",
        mask=mask,
        background_color="white",
        stopwords=stopwords,
        collocations=True,
    ).generate_from_text(data)
    fig = plt.figure()
    plt.imshow(cloud)
    plt.axis("off")
    return fig


with upper_panel:
    st.subheader("Subjects")
    figs = generate_better_wordcloud(subjects)
    st.pyplot(figs)

with middle_panel:
    st.subheader("Verbs")
    figv = generate_better_wordcloud(verbs)
    st.pyplot(figv)

with lower_panel:
    st.subheader("Objects")
    figo = generate_better_wordcloud(objects)
    st.pyplot(figo)


# network
def build_and_plot_knowledge_graph_pyvis(result):
    G = nx.DiGraph()

    subjects = result["subjects"]
    verbs = result["verbs"]
    objects = result["objects"]
    indirect_objects = result["indirect_objects"]

    for subject in subjects:
        for verb in verbs:
            for obj in objects:
                G.add_edge(subject, obj, label=verb)
            for ind_obj in indirect_objects:
                G.add_edge(subject, ind_obj, label=verb)

    pos = nx.spring_layout(G, seed=42, k=0.5, iterations=50)

    nx.draw(
        G,
        pos,
        with_labels=True,
        node_color="#FF746C",
        node_size=2000,
        font_size=12,
        font_color="black",
        font_weight="normal",
        arrows=True,
    )

    edge_labels = nx.get_edge_attributes(G, "label")
    nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)

    net = Network()
    net.repulsion()
    net.from_nx(G)
    fig = plt.gcf()

    return fig


with col3:
    try:
        st.subheader("Mental map")
        st.write(
            "This is a 2D knowledge graph from simple :red-background[semantic role labeling] of the reddit post using spaCy, NetworkX, and Matplotlib. :red-background[Tick the box next to the row of interest to display the mental map of the individual post]. The graph shows the relationship between the subject, verb, and object at singular level, to complement the full-level overview of the word clouds. It takes a moment to load the data and if the image does not show, it is because some of the posts are deleted or removed in the original dataset."
        )
        person = int(event.selection.rows[0])
        plt.clf()
        fign = build_and_plot_knowledge_graph_pyvis(srl_results[person])
        st.pyplot(fign)
    except:
        pass