File size: 9,073 Bytes
b0f8552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296ba73
b0f8552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296ba73
b0f8552
 
296ba73
b0f8552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296ba73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0f8552
296ba73
b0f8552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296ba73
 
 
 
b0f8552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import pandas as pd
import streamlit as st
from streamlit_calendar import calendar
from streamlit_timeline import st_timeline
import numpy as np
from sklearn.cluster import KMeans
import altair as alt

st.set_page_config(layout="wide")

# load data
df = pd.read_csv("data/colon.csv")
df = df.dropna(subset=["DESCRIPTION", "START"])
df["BIRTHDATE"] = pd.to_datetime(df["BIRTHDATE"], errors="coerce").dt.date
df["START"] = pd.to_datetime(df["START"], errors="coerce").dt.date
df["STOP"] = pd.to_datetime(df["STOP"], errors="coerce").dt.date
df = df.sort_values(by=["ID", "START", "DESCRIPTION"], ascending=[True, False, True])
unique_ids = df["ID"].unique()

# inject custom CSS to set the width of the sidebar
st.markdown(
    """
    <style>
        section[data-testid="stSidebar"] {
            width: 600px !important; # Set the width to your desired value
        }
    </style>
    """,
    unsafe_allow_html=True,
)

# pick id
st.sidebar.title("Patient information")
st.session_state.id = st.sidebar.selectbox(
    "Select patient ID:",
    unique_ids,
    index=0,
    placeholder="Type or select ID...",
)

# sidebar
name = (
    df.loc[df["ID"] == st.session_state.id, "NAME"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "NAME"].empty
    else None
)

gender = (
    df.loc[df["ID"] == st.session_state.id, "GENDER"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "GENDER"].empty
    else None
)
st.sidebar.write("Name:", name, f" ({gender})")

bd = (
    df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].empty
    else None
)
st.sidebar.write("Birthdate:", bd)

race = (
    df.loc[df["ID"] == st.session_state.id, "RACE"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "RACE"].empty
    else None
)

etn = (
    df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].empty
    else None
)
st.sidebar.write("Race/Ethnicity:", race, " /", etn)

mar = (
    df.loc[df["ID"] == st.session_state.id, "MARITAL"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "MARITAL"].empty
    else None
)
st.sidebar.write("Marital status:", mar)

adr = (
    df.loc[df["ID"] == st.session_state.id, "ADDRESS"].iloc[0]
    if not df.loc[df["ID"] == st.session_state.id, "ADDRESS"].empty
    else None
)
st.sidebar.write("Address:", adr)

# filter data
st.session_state.filtered_df = df[df["ID"] == st.session_state.id]
try:
    st.session_state.initial_date = (
        st.session_state.filtered_df["START"].max().strftime("%Y-%m-%d")
    )
except:
    pass

if not st.session_state.filtered_df.empty:
    st.session_state.events = [
        {
            "title": row["DESCRIPTION"],
            "color": "#3a6ad6",
            "start": row["START"].strftime("%Y-%m-%d"),
            "end": row["START"].strftime("%Y-%m-%d"),
        }
        for _, row in st.session_state.filtered_df.iterrows()
    ]

# calendar
mode = st.sidebar.selectbox(
    "Calendar Mode:",
    (
        "daygrid",
        "list",
    ),
)

calendar_options = {
    "editable": "true",
    "navLinks": "true",
    "selectable": "true",
}

if mode == "daygrid":
    calendar_options = {
        **calendar_options,
        "headerToolbar": {
            "left": "today prev,next",
            "center": "title",
            "right": "dayGridDay,dayGridWeek,dayGridMonth",
        },
        "initialDate": st.session_state.initial_date,
        "initialView": "dayGridMonth",
    }

elif mode == "list":
    calendar_options = {
        **calendar_options,
        "initialDate": st.session_state.initial_date,
        "initialView": "listMonth",
    }

with st.sidebar:
    st.session_state.state = calendar(
        events=st.session_state.get("events", st.session_state.events),
        options=calendar_options,
        custom_css="""
        .fc-event-past {
            opacity: 0.8;
        }
        .fc-event-time {
            font-style: italic;
        }
        .fc-event-title {
            font-weight: 700;
        }
        .fc-toolbar-title {
            font-size: 2rem;
        }
        .fc-button {
            background-color: #4CAF50;
            color: #ffffff;
            border: none;
            cursor: pointer;
        }
        .fc-button:hover {
            background-color: #45a049;
        }
        .fc-button-primary {
            background-color: #3a6ad6;
        }
        .fc-button-primary:hover {
            background-color: #3a6ad6;
        }
        .fc-button-secondary {
            background-color: #e7e7e7;
            color: black;
        }
        .fc-button-secondary:hover {
            background-color: #ddd;
        }
        """,
        key=mode,
    )


if st.session_state.state.get("eventsSet") is not None:
    st.session_state["events"] = st.session_state.state["eventsSet"]

# clustering
col1, col2 = st.columns([1, 2])

with col1:
    # clustering
    st.markdown(
        """ 
    <style>
    div.stSlider > div[data-baseweb="slider"] > div > div > div[role="slider"] {
        background-color: #3a6ad6; 
        box-shadow: rgba(58, 106, 214, 0.2) 0px 0px 0px 0.2rem;
    }
    div.stSlider > div[data-baseweb="slider"] > div > div > div > div {
        color: #3a6ad6;
    }
    div.stSlider > div[data-baseweb = "slider"] > div > div {{
    background: linear-gradient(to right, #3a6ad6 0%, 
                                #3a6ad6 {NB}%, 
                                #3a6ad6 {NB}%, 
                                #3a6ad6 100%); }}
    </style>
    """,
        unsafe_allow_html=True,
    )
    st.session_state.n_clusters = st.slider("Select number of clusters", 2, 5, 5)
    if st.button("Show cluster"):
        df = df[["ID", "START", "STOP", "DESCRIPTION"]]
        st.session_state.df = df.groupby("ID").agg({"DESCRIPTION": list}).reset_index()
        st.session_state.df["DESCRIPTION"] = st.session_state.df["DESCRIPTION"].apply(
            np.array
        )
        training_data = st.session_state.df["DESCRIPTION"].tolist()

        transformed_data = []
        for array in training_data:
            unique_values = np.unique(array)
            value_to_int = {value: idx + 1 for idx, value in enumerate(unique_values)}
            transformed_array = np.vectorize(value_to_int.get)(array)
            transformed_data.append(transformed_array)

        max_length = max(len(array) for array in transformed_data)
        padded_data = [
            np.pad(array, (0, max_length - len(array)), "constant")
            for array in transformed_data
        ]
        padded_data_array = np.vstack(padded_data)

        st.session_state.kmeans = KMeans(
            n_clusters=st.session_state.n_clusters, random_state=42
        )
        st.session_state.cluster_labels = st.session_state.kmeans.fit_predict(
            padded_data_array
        )
        st.session_state.idx = st.session_state.df.index[
            st.session_state.df["ID"] == st.session_state.id
        ]
        st.write(
            "This patient belonngs to cluster:",
            st.session_state.cluster_labels[st.session_state.idx][0],
        )

    try:
        st.session_state.label_counts = (
            pd.Series(st.session_state.cluster_labels).value_counts().sort_index()
        )
        st.session_state.cluster_df = pd.DataFrame(
            {
                "Cluster Label": st.session_state.label_counts.index,
                "Count": st.session_state.label_counts.values,
            }
        )
        # st.bar_chart(st.session_state.cluster_df)
        chart = (
            alt.Chart(st.session_state.cluster_df)
            .mark_bar()
            .encode(x="Cluster Label:O", y="Count:Q")
            .properties(title="Number of people per cluster")
            .configure_legend(disable=True)  # Disable the legend
        )
        st.altair_chart(chart, use_container_width=True)
    except:
        pass

with col2:
    try:
        st.session_state.selected_cluster = st.selectbox(
            "Select cluster to view descriptions",
            np.unique(st.session_state.cluster_labels),
            0,
        )
        st.session_state.indices = np.where(
            st.session_state.cluster_labels == st.session_state.selected_cluster
        )[0]
        st.session_state.seq_df = st.session_state.df.loc[st.session_state.indices]
        st.write(f"Descriptions for cluster {st.session_state.selected_cluster}:")
        st.dataframe(
            st.session_state.seq_df["DESCRIPTION"],
            use_container_width=True,
        )
    except:
        pass

# timeline
if not st.session_state.filtered_df.empty:
    st.session_state.item = [
        {
            "id": id,
            "content": row["DESCRIPTION"],
            "start": row["START"].strftime("%Y-%m-%d"),
        }
        for id, (_, row) in enumerate(st.session_state.filtered_df.iterrows())
    ]

st.session_state.timeline = st_timeline(
    st.session_state.item, groups=[], options={}, height="300px", width="100%"
)