File size: 9,073 Bytes
b0f8552 296ba73 b0f8552 296ba73 b0f8552 296ba73 b0f8552 296ba73 b0f8552 296ba73 b0f8552 296ba73 b0f8552 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import pandas as pd
import streamlit as st
from streamlit_calendar import calendar
from streamlit_timeline import st_timeline
import numpy as np
from sklearn.cluster import KMeans
import altair as alt
st.set_page_config(layout="wide")
# load data
df = pd.read_csv("data/colon.csv")
df = df.dropna(subset=["DESCRIPTION", "START"])
df["BIRTHDATE"] = pd.to_datetime(df["BIRTHDATE"], errors="coerce").dt.date
df["START"] = pd.to_datetime(df["START"], errors="coerce").dt.date
df["STOP"] = pd.to_datetime(df["STOP"], errors="coerce").dt.date
df = df.sort_values(by=["ID", "START", "DESCRIPTION"], ascending=[True, False, True])
unique_ids = df["ID"].unique()
# inject custom CSS to set the width of the sidebar
st.markdown(
"""
<style>
section[data-testid="stSidebar"] {
width: 600px !important; # Set the width to your desired value
}
</style>
""",
unsafe_allow_html=True,
)
# pick id
st.sidebar.title("Patient information")
st.session_state.id = st.sidebar.selectbox(
"Select patient ID:",
unique_ids,
index=0,
placeholder="Type or select ID...",
)
# sidebar
name = (
df.loc[df["ID"] == st.session_state.id, "NAME"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "NAME"].empty
else None
)
gender = (
df.loc[df["ID"] == st.session_state.id, "GENDER"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "GENDER"].empty
else None
)
st.sidebar.write("Name:", name, f" ({gender})")
bd = (
df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "BIRTHDATE"].empty
else None
)
st.sidebar.write("Birthdate:", bd)
race = (
df.loc[df["ID"] == st.session_state.id, "RACE"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "RACE"].empty
else None
)
etn = (
df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "ETHNICITY"].empty
else None
)
st.sidebar.write("Race/Ethnicity:", race, " /", etn)
mar = (
df.loc[df["ID"] == st.session_state.id, "MARITAL"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "MARITAL"].empty
else None
)
st.sidebar.write("Marital status:", mar)
adr = (
df.loc[df["ID"] == st.session_state.id, "ADDRESS"].iloc[0]
if not df.loc[df["ID"] == st.session_state.id, "ADDRESS"].empty
else None
)
st.sidebar.write("Address:", adr)
# filter data
st.session_state.filtered_df = df[df["ID"] == st.session_state.id]
try:
st.session_state.initial_date = (
st.session_state.filtered_df["START"].max().strftime("%Y-%m-%d")
)
except:
pass
if not st.session_state.filtered_df.empty:
st.session_state.events = [
{
"title": row["DESCRIPTION"],
"color": "#3a6ad6",
"start": row["START"].strftime("%Y-%m-%d"),
"end": row["START"].strftime("%Y-%m-%d"),
}
for _, row in st.session_state.filtered_df.iterrows()
]
# calendar
mode = st.sidebar.selectbox(
"Calendar Mode:",
(
"daygrid",
"list",
),
)
calendar_options = {
"editable": "true",
"navLinks": "true",
"selectable": "true",
}
if mode == "daygrid":
calendar_options = {
**calendar_options,
"headerToolbar": {
"left": "today prev,next",
"center": "title",
"right": "dayGridDay,dayGridWeek,dayGridMonth",
},
"initialDate": st.session_state.initial_date,
"initialView": "dayGridMonth",
}
elif mode == "list":
calendar_options = {
**calendar_options,
"initialDate": st.session_state.initial_date,
"initialView": "listMonth",
}
with st.sidebar:
st.session_state.state = calendar(
events=st.session_state.get("events", st.session_state.events),
options=calendar_options,
custom_css="""
.fc-event-past {
opacity: 0.8;
}
.fc-event-time {
font-style: italic;
}
.fc-event-title {
font-weight: 700;
}
.fc-toolbar-title {
font-size: 2rem;
}
.fc-button {
background-color: #4CAF50;
color: #ffffff;
border: none;
cursor: pointer;
}
.fc-button:hover {
background-color: #45a049;
}
.fc-button-primary {
background-color: #3a6ad6;
}
.fc-button-primary:hover {
background-color: #3a6ad6;
}
.fc-button-secondary {
background-color: #e7e7e7;
color: black;
}
.fc-button-secondary:hover {
background-color: #ddd;
}
""",
key=mode,
)
if st.session_state.state.get("eventsSet") is not None:
st.session_state["events"] = st.session_state.state["eventsSet"]
# clustering
col1, col2 = st.columns([1, 2])
with col1:
# clustering
st.markdown(
"""
<style>
div.stSlider > div[data-baseweb="slider"] > div > div > div[role="slider"] {
background-color: #3a6ad6;
box-shadow: rgba(58, 106, 214, 0.2) 0px 0px 0px 0.2rem;
}
div.stSlider > div[data-baseweb="slider"] > div > div > div > div {
color: #3a6ad6;
}
div.stSlider > div[data-baseweb = "slider"] > div > div {{
background: linear-gradient(to right, #3a6ad6 0%,
#3a6ad6 {NB}%,
#3a6ad6 {NB}%,
#3a6ad6 100%); }}
</style>
""",
unsafe_allow_html=True,
)
st.session_state.n_clusters = st.slider("Select number of clusters", 2, 5, 5)
if st.button("Show cluster"):
df = df[["ID", "START", "STOP", "DESCRIPTION"]]
st.session_state.df = df.groupby("ID").agg({"DESCRIPTION": list}).reset_index()
st.session_state.df["DESCRIPTION"] = st.session_state.df["DESCRIPTION"].apply(
np.array
)
training_data = st.session_state.df["DESCRIPTION"].tolist()
transformed_data = []
for array in training_data:
unique_values = np.unique(array)
value_to_int = {value: idx + 1 for idx, value in enumerate(unique_values)}
transformed_array = np.vectorize(value_to_int.get)(array)
transformed_data.append(transformed_array)
max_length = max(len(array) for array in transformed_data)
padded_data = [
np.pad(array, (0, max_length - len(array)), "constant")
for array in transformed_data
]
padded_data_array = np.vstack(padded_data)
st.session_state.kmeans = KMeans(
n_clusters=st.session_state.n_clusters, random_state=42
)
st.session_state.cluster_labels = st.session_state.kmeans.fit_predict(
padded_data_array
)
st.session_state.idx = st.session_state.df.index[
st.session_state.df["ID"] == st.session_state.id
]
st.write(
"This patient belonngs to cluster:",
st.session_state.cluster_labels[st.session_state.idx][0],
)
try:
st.session_state.label_counts = (
pd.Series(st.session_state.cluster_labels).value_counts().sort_index()
)
st.session_state.cluster_df = pd.DataFrame(
{
"Cluster Label": st.session_state.label_counts.index,
"Count": st.session_state.label_counts.values,
}
)
# st.bar_chart(st.session_state.cluster_df)
chart = (
alt.Chart(st.session_state.cluster_df)
.mark_bar()
.encode(x="Cluster Label:O", y="Count:Q")
.properties(title="Number of people per cluster")
.configure_legend(disable=True) # Disable the legend
)
st.altair_chart(chart, use_container_width=True)
except:
pass
with col2:
try:
st.session_state.selected_cluster = st.selectbox(
"Select cluster to view descriptions",
np.unique(st.session_state.cluster_labels),
0,
)
st.session_state.indices = np.where(
st.session_state.cluster_labels == st.session_state.selected_cluster
)[0]
st.session_state.seq_df = st.session_state.df.loc[st.session_state.indices]
st.write(f"Descriptions for cluster {st.session_state.selected_cluster}:")
st.dataframe(
st.session_state.seq_df["DESCRIPTION"],
use_container_width=True,
)
except:
pass
# timeline
if not st.session_state.filtered_df.empty:
st.session_state.item = [
{
"id": id,
"content": row["DESCRIPTION"],
"start": row["START"].strftime("%Y-%m-%d"),
}
for id, (_, row) in enumerate(st.session_state.filtered_df.iterrows())
]
st.session_state.timeline = st_timeline(
st.session_state.item, groups=[], options={}, height="300px", width="100%"
)
|