Jimin Park commited on
Commit
021c2c9
·
1 Parent(s): 81cae4a

update app.py

Browse files
Files changed (3) hide show
  1. app.py +64 -49
  2. app_old.py +64 -0
  3. requirements.txt +2 -1
app.py CHANGED
@@ -1,64 +1,79 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("emeses/lab2_model")
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
 
 
 
 
 
31
  messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import torch
2
+ import transformers
3
  import gradio as gr
4
+ from unsloth import FastLanguageModel
5
 
6
+ # Load the fine-tuned Unsloth model
7
+ max_seq_length = 2048 # Adjust based on your training
8
+ dtype = None # None for auto detection
 
9
 
10
+ def load_model():
11
+ model, tokenizer = FastLanguageModel.from_pretrained(
12
+ model_name="ivwhy/lora_model", # Your fine-tuned model path
13
+ max_seq_length=max_seq_length,
14
+ dtype=dtype,
15
+ load_in_4bit=True # Optional: load in 4-bit for efficiency
16
+ )
17
 
18
+ # Optional: Add special tokens for chat if needed
19
+ tokenizer.pad_token = tokenizer.eos_token
 
 
 
 
 
 
 
20
 
21
+ # Create the pipeline
22
+ pipeline = transformers.pipeline(
23
+ "text-generation",
24
+ model=model,
25
+ tokenizer=tokenizer,
26
+ device=0 if torch.cuda.is_available() else -1 # Use GPU if available
27
+ )
28
+
29
+ return pipeline, tokenizer
30
 
31
+ # Load model globally
32
+ generation_pipeline, tokenizer = load_model()
33
 
34
+ def chat_function(message, history, system_prompt, max_new_tokens, temperature):
35
+ messages = [
36
+ {"role": "system", "content": system_prompt},
37
+ {"role": "user", "content": message}
38
+ ]
39
+
40
+ # Apply chat template
41
+ prompt = tokenizer.apply_chat_template(
42
  messages,
43
+ tokenize=False,
44
+ add_generation_prompt=True,
45
+ )
46
+
47
+ # Define terminators
48
+ terminators = [
49
+ tokenizer.eos_token_id,
50
+ tokenizer.convert_tokens_to_ids("<|eot_id|>")
51
+ ]
52
+
53
+ # Generate response
54
+ outputs = generation_pipeline(
55
+ prompt,
56
+ max_new_tokens=max_new_tokens,
57
+ eos_token_id=terminators,
58
+ do_sample=True,
59
  temperature=temperature,
60
+ top_p=0.9,
61
+ )
62
+
63
+ # Extract and return just the generated text
64
+ return outputs[0]["generated_text"][len(prompt):]
 
65
 
66
+ # Create Gradio interface
 
 
 
67
  demo = gr.ChatInterface(
68
+ chat_function,
69
+ textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
70
+ chatbot=gr.Chatbot(height=400),
71
  additional_inputs=[
72
+ gr.Textbox("You are helpful AI", label="System Prompt"),
73
+ gr.Slider(minimum=1, maximum=4000, value=500, label="Max New Tokens"),
74
+ gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
75
+ ]
 
 
 
 
 
 
 
76
  )
77
 
 
78
  if __name__ == "__main__":
79
+ demo.launch()
app_old.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
+ """
5
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ """
7
+ client = InferenceClient("emeses/lab2_model")
8
+
9
+
10
+ def respond(
11
+ message,
12
+ history: list[tuple[str, str]],
13
+ system_message,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
17
+ ):
18
+ messages = [{"role": "system", "content": system_message}]
19
+
20
+ for val in history:
21
+ if val[0]:
22
+ messages.append({"role": "user", "content": val[0]})
23
+ if val[1]:
24
+ messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ messages.append({"role": "user", "content": message})
27
+
28
+ response = ""
29
+
30
+ for message in client.chat_completion(
31
+ messages,
32
+ max_tokens=max_tokens,
33
+ stream=True,
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ ):
37
+ token = message.choices[0].delta.content
38
+
39
+ response += token
40
+ yield response
41
+
42
+
43
+ """
44
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ """
46
+ demo = gr.ChatInterface(
47
+ respond,
48
+ additional_inputs=[
49
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ gr.Slider(
53
+ minimum=0.1,
54
+ maximum=1.0,
55
+ value=0.95,
56
+ step=0.05,
57
+ label="Top-p (nucleus sampling)",
58
+ ),
59
+ ],
60
+ )
61
+
62
+
63
+ if __name__ == "__main__":
64
+ demo.launch()
requirements.txt CHANGED
@@ -2,4 +2,5 @@ huggingface_hub==0.25.2
2
  transformers
3
  torch
4
  gradio
5
- python-dotenv
 
 
2
  transformers
3
  torch
4
  gradio
5
+ python-dotenv
6
+ accelerate