File size: 6,241 Bytes
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import pandas as pd
import os
import time
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC

def scrape_leaderboards(regions=None, pages_per_region=5, output_file=None, delay=2):
    """
    Scrape leaderboard data from op.gg for specified regions and return as DataFrame.
    
    Args:
        regions (list): List of regions to scrape. Defaults to ["kr", "na", "vn", "euw"]
        pages_per_region (int): Number of pages to scrape per region. Defaults to 5
        output_file (str): Path to output file. Defaults to "util/data/leaderboard_data.csv"
        delay (int): Delay between requests in seconds. Defaults to 2
    
    Returns:
        pandas.DataFrame: Scraped leaderboard data
    """
    # Set defaults
    if regions is None:
        regions = ["kr", "na", "vn", "euw"]
    
    if output_file is None:
        output_file = os.path.join("util", "data", "leaderboard_data.csv")
    
    # Initialize data list to store rows
    leaderboard_data = []

    try:
        # Setup Chrome options
        chrome_options = Options()
        chrome_options.add_argument("--headless")
        chrome_options.add_argument("--no-sandbox")
        chrome_options.add_argument("--disable-dev-shm-usage")
        chrome_options.add_argument("--disable-gpu")
        chrome_options.add_argument("--disable-logging")
        chrome_options.add_argument("--log-level=3")
        chrome_options.add_argument("--disable-extensions")
        chrome_options.page_load_strategy = 'eager'
        chrome_options.add_argument(
            "user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
        )

        # Initialize WebDriver
        driver = webdriver.Chrome(
            service=Service(ChromeDriverManager().install()),
            options=chrome_options
        )

        for region in regions:
            print(f"\nScraping {region.upper()} region...")
            for page in range(1, pages_per_region + 1):
                print(f"Processing page {page}/{pages_per_region}")
                url = f"https://www.op.gg/leaderboards/tier?region={region}&type=ladder&page={page}"
                
                try:
                    # Access the webpage
                    driver.get(url)

                    # Wait for table to load
                    table = WebDriverWait(driver, 15).until(
                        EC.presence_of_element_located((By.CSS_SELECTOR, "table.css-1l95r9q.e4dns9u11"))
                    )

                    # Process rows
                    rows = table.find_elements(By.TAG_NAME, "tr")[1:]  # Skip header row
                    for row in rows:
                        try:
                            cells = row.find_elements(By.TAG_NAME, "td")
                            if len(cells) >= 7:
                                # Extract basic data
                                summoner = cells[1].text.strip().replace("\n", " ")
                                rank = cells[0].text.strip()
                                tier = cells[2].text.strip()
                                lp = cells[3].text.strip()
                                level = cells[5].text.strip()

                                # Extract champion data
                                champion_imgs = cells[4].find_elements(By.TAG_NAME, "img")
                                champions = [img.get_attribute("alt") for img in champion_imgs]
                                champion_data = champions + [""] * (3 - len(champions))

                                # Parse win/loss data
                                winrate_text = cells[6].text.strip().split("\n")
                                wins = winrate_text[0].rstrip("W") if len(winrate_text) > 0 else ""
                                losses = winrate_text[1].rstrip("L") if len(winrate_text) > 1 else ""
                                winrate = winrate_text[2] if len(winrate_text) > 2 else ""

                                # Append row data
                                leaderboard_data.append({
                                    "summoner": summoner,
                                    "region": region,
                                    "rank": rank,
                                    "tier": tier,
                                    "lp": lp,
                                    "most_champion_1": champion_data[0],
                                    "most_champion_2": champion_data[1],
                                    "most_champion_3": champion_data[2],
                                    "level": level,
                                    "win": wins,
                                    "loss": losses,
                                    "winrate": winrate
                                })

                        except Exception as e:
                            print(f"Error processing row in {region} page {page}: {e}")
                            continue

                except Exception as e:
                    print(f"Error processing {region} page {page}: {e}")
                    continue

                time.sleep(delay)

    except Exception as e:
        print(f"Fatal error: {e}")
        return None

    finally:
        driver.quit()

    # Create DataFrame
    df = pd.DataFrame(leaderboard_data)
    
    # Clean and convert data types
    df['lp'] = df['lp'].str.replace(',', '').str.replace('LP', '').astype(float)
    df['level'] = df['level'].astype(int)
    df['win'] = pd.to_numeric(df['win'], errors='coerce')
    df['loss'] = pd.to_numeric(df['loss'], errors='coerce')
    df['winrate'] = df['winrate'].str.rstrip('%').astype(float) / 100
    
    # Save to CSV if output_file is specified
    if output_file:
        os.makedirs(os.path.dirname(output_file), exist_ok=True)
        df.to_csv(output_file, index=False)
        print(f"Leaderboard data saved to {output_file}")

    return df