Spaces:
Sleeping
Sleeping
File size: 24,009 Bytes
abcb943 f067acf abcb943 8c94d1f 7f1dc32 8c94d1f 19e44c2 f067acf 8c94d1f abcb943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
import os
import time
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import pandas as pd
from webdriver_manager.core.os_manager import ChromeType
from helper import format_summoner_name
# Constants
BASE_URL = "https://www.op.gg/summoners/{region}/{username}?queue_type=SOLORANKED"
MASTERY_URL = "https://www.op.gg/summoners/{region}/{username}/mastery"
def setup_driver():
"""Setup optimized Chrome WebDriver"""
options = Options()
options.add_argument("--headless")
options.add_argument("--no-sandbox")
options.add_argument("--disable-dev-shm-usage")
options.add_argument("--disable-gpu")
options.add_argument("--disable-logging")
options.add_argument("--log-level=3")
options.add_argument("--disable-extensions")
options.page_load_strategy = 'eager'
options.add_argument(
"user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
)
# Check if we're running in Hugging Face Spaces or locally
if 'HF_SPACE' in os.environ:
# Hugging Face Space is detected, handle accordingly (example for versioning)
print("Running on Hugging Face Space.")
chromedriver_path = ChromeDriverManager().install()
else:
# Local environment setup
print("Running chrome webdriver.")
chromedriver_path = ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install()
# Create the Service object using the installed chromedriver
service = Service(executable_path=chromedriver_path)
# Return the configured WebDriver instance
driver = webdriver.Chrome(service=service, options=options)
return driver
def wait_and_find_element(driver, selector, timeout=20, description="element"):
"""Utility function for waiting and finding elements"""
try:
element = WebDriverWait(driver, timeout).until(
EC.presence_of_element_located((By.CSS_SELECTOR, selector))
)
return element
except Exception as e:
print(f"Error finding {description}: {e}")
return None
def get_recent_stats(stats_box):
"""Extract recent statistics from stats box"""
try:
stats = stats_box.find_element(By.CSS_SELECTOR, "div.stats")
recent_stats = stats.text.strip().split("\n")
# Parse the stats into a structured format
games_info = recent_stats[0].split() # ['20G', '13W', '7L']
total_games = int(games_info[0].replace('G', ''))
wins = int(games_info[1].replace('W', ''))
losses = int(games_info[2].replace('L', ''))
win_rate = float(recent_stats[1].replace('%', '')) / 100
kda_parts = recent_stats[2].split(' / ') # ['5.1', '4.0', '7.9']
kills = float(kda_parts[0])
deaths = float(kda_parts[1])
assists = float(kda_parts[2])
kda_ratio = float(recent_stats[3].replace(':1', ''))
kill_participation = float(recent_stats[4].replace('P/Kill ', '').replace('%', '')) / 100
recent_stats = {
"total_games": total_games,
"wins": wins,
"losses": losses,
"win_rate": win_rate,
"avg_kills": kills,
"avg_deaths": deaths,
"avg_assists": assists,
"kda_ratio": kda_ratio,
"kill_participation": kill_participation,
}
except Exception as e:
print(f"Error extracting recent stats: {e}")
return None
return recent_stats
def get_recent_champions(stats_box):
champions = stats_box.find_element(By.CSS_SELECTOR, "div.champions")
champion_elements = champions.find_elements(By.CSS_SELECTOR, "li")
# Initialize flat dictionary with defaults
recent_champ_stats = {
"most_champ_1": None, "WR_1": 0.0, "W_1": 0, "L_1": 0, "KDA_1": 0.0,
"most_champ_2": None, "WR_2": 0.0, "W_2": 0, "L_2": 0, "KDA_2": 0.0,
"most_champ_3": None, "WR_3": 0.0, "W_3": 0, "L_3": 0, "KDA_3": 0.0
}
for i, champion in enumerate(champion_elements, 1):
try:
# Initialize kda for this iteration
kda = 0.0
# Extract champion name and image source
champ_name = champion.find_element(By.TAG_NAME, "img").get_attribute("alt")
# Extract win/lose stats and KDA
win_lose = champion.find_element(By.CSS_SELECTOR, ".win-lose").text.strip()
win_rate = float(win_lose.split('%')[0]) / 100 # "75%" -> 0.75
wins = int(win_lose.split('(')[1].split('W')[0]) # "(3W 1L)" -> 3
losses = int(win_lose.split('W')[1].split('L')[0]) # "1L)" -> 1
# KDA processing with a more precise selector
try:
kda_element = champion.find_element(By.CSS_SELECTOR, "div[class*='e1t9nk8i2']")
if kda_element:
kda_text = kda_element.text.strip()
#print(f"Found KDA text for champion {i}: '{kda_text}'") # Debug print
if kda_text and "KDA" in kda_text:
kda = float(kda_text.split("KDA")[0].strip())
#print(f"Parsed KDA value: {kda}") # Debug print
else:
print(f"Invalid KDA text format for champion {i}: '{kda_text}'")
else:
print(f"No KDA element found for champion {i}")
except Exception as e:
print(f"Error processing KDA: {e}")
kda = 0.0
# Update flat dictionary
recent_champ_stats[f"most_champ_{i}"] = champ_name
recent_champ_stats[f"WR_{i}"] = win_rate
recent_champ_stats[f"W_{i}"] = wins
recent_champ_stats[f"L_{i}"] = losses
recent_champ_stats[f"KDA_{i}"] = kda
except Exception as e:
print(f"Error processing champion {i}: {e}")
# Dictionary already has default values for this champion
continue
return recent_champ_stats
def get_preferred_role(stats_box):
# Role priority (higher index = higher priority when tied)
role_priority = {
'SUPPORT': 0,
'ADC': 1,
'TOP': 2,
'JUNGLE': 3,
'MID': 4
}
# Find the positions section
positions = stats_box.find_element(By.CSS_SELECTOR, "div.positions")
role_elements = positions.find_elements(By.CSS_SELECTOR, "li")
preferred_roles = {
'TOP': 0.0, 'JUNGLE': 0.0, 'MID': 0.0, 'ADC': 0.0, 'SUPPORT': 0.0,
'most_role_1': None, 'most_role_2': None,
'most_role_1_value': 0.0, 'most_role_2_value': 0.0
}
# First, collect all role percentages
for role in role_elements:
role_name = role.find_element(By.CSS_SELECTOR, "div.position img").get_attribute("alt")
percentage = role.find_element(By.CSS_SELECTOR, "div.gauge").get_attribute("style")
if percentage:
percentage_value = percentage.split(":")[1].strip().replace("%", "").strip(';')
try:
preferred_roles[role_name] = int(percentage_value)/100
except ValueError:
preferred_roles[role_name] = 0
# Sort roles by percentage first, then by priority when tied
sorted_roles = sorted(
[(role, value) for role, value in preferred_roles.items() if role in role_priority],
key=lambda x: (x[1], role_priority[x[0]]), # Sort by percentage first, then role priority
reverse=True
)
# Add top 2 roles if they exist
if len(sorted_roles) > 0:
preferred_roles['most_role_1'] = sorted_roles[0][0]
preferred_roles['most_role_1_value'] = sorted_roles[0][1]
if len(sorted_roles) > 1:
preferred_roles['most_role_2'] = sorted_roles[1][0]
preferred_roles['most_role_2_value'] = sorted_roles[1][1]
return preferred_roles
def get_weekly_stats(ranked_7d_box):
# Find the list of champions in the ranked 7d box
champion_elements = ranked_7d_box.find_elements(By.CSS_SELECTOR, "ul li")[:3]
# Initialize flat dictionary with defaults for 3 champions
weekly_stats = {
"7d_champ_1": None, "7d_total_1": 0, "7d_W_1": 0, "7d_L_1": 0, "7d_WR_1": 0.0,
"7d_champ_2": None, "7d_total_2": 0, "7d_W_2": 0, "7d_L_2": 0, "7d_WR_2": 0.0,
"7d_champ_3": None, "7d_total_3": 0, "7d_W_3": 0, "7d_L_3": 0, "7d_WR_3": 0.0
}
# Find the list of champions and take first 3
for i, champion in enumerate(champion_elements, 1):
try:
# Extract champion name
champ_name = champion.find_element(By.CSS_SELECTOR, "div.info > div.name > a").text.strip()
# Extract wins and losses
try:
win_text = champion.find_element(By.XPATH, ".//div[@class='graph']//div[@class='text left']").text.strip()
loss_text = champion.find_element(By.XPATH, ".//div[@class='graph']//div[@class='text right']").text.strip()
wins = int(win_text.replace('W', '').strip()) if 'W' in win_text else 0
losses = int(loss_text.replace('L', '').strip()) if 'L' in loss_text else 0
except Exception:
wins = 0
losses = 0
# Calculate total games
total_games = wins + losses
# Extract win rate
try:
win_rate_text = champion.find_element(By.CSS_SELECTOR, "div.winratio").text.strip()
win_rate = float(win_rate_text.replace('%', '').strip()) / 100 if win_rate_text else 0
except Exception:
win_rate = 0
# Update flat dictionary with dynamic numbering
weekly_stats[f"7d_champ_{i}"] = champ_name
weekly_stats[f"7d_total_{i}"] = total_games
weekly_stats[f"7d_W_{i}"] = wins
weekly_stats[f"7d_L_{i}"] = losses
weekly_stats[f"7d_WR_{i}"] = win_rate
except Exception as e:
print(f"Error processing champion {i} in 7d stats: {e}")
# Add default values for error cases
weekly_stats[f"7d_champ_{i}"] = None
weekly_stats[f"7d_total_{i}"] = 0
weekly_stats[f"7d_W_{i}"] = 0
weekly_stats[f"7d_L_{i}"] = 0
weekly_stats[f"7d_WR_{i}"] = 0.0
return weekly_stats
def get_season_data(season_champ_box):
# Initialize flat dictionary with defaults for 7 champions
season_data = {
"season_champ_1": None, "cs_ssn_1": "0", "cpm_ssn_1": "0", "kda_ssn_1": "0", "k_ssn_1": "0", "d_ssn_1": "0", "a_ssn_1": "0", "wr_ssn_1": 0.0, "games_ssn_1": "0",
"season_champ_2": None, "cs_ssn_2": "0", "cpm_ssn_2": "0", "kda_ssn_2": "0", "k_ssn_2": "0", "d_ssn_2": "0", "a_ssn_2": "0", "wr_ssn_2": 0.0, "games_ssn_2": "0",
"season_champ_3": None, "cs_ssn_3": "0", "cpm_ssn_3": "0", "kda_ssn_3": "0", "k_ssn_3": "0", "d_ssn_3": "0", "a_ssn_3": "0", "wr_ssn_3": 0.0, "games_ssn_3": "0",
"season_champ_4": None, "cs_ssn_4": "0", "cpm_ssn_4": "0", "kda_ssn_4": "0", "k_ssn_4": "0", "d_ssn_4": "0", "a_ssn_4": "0", "wr_ssn_4": 0.0, "games_ssn_4": "0",
"season_champ_5": None, "cs_ssn_5": "0", "cpm_ssn_5": "0", "kda_ssn_5": "0", "k_ssn_5": "0", "d_ssn_5": "0", "a_ssn_5": "0", "wr_ssn_5": 0.0, "games_ssn_5": "0",
"season_champ_6": None, "cs_ssn_6": "0", "cpm_ssn_6": "0", "kda_ssn_6": "0", "k_ssn_6": "0", "d_ssn_6": "0", "a_ssn_6": "0", "wr_ssn_6": 0.0, "games_ssn_6": "0",
"season_champ_7": None, "cs_ssn_7": "0", "cpm_ssn_7": "0", "kda_ssn_7": "0", "k_ssn_7": "0", "d_ssn_7": "0", "a_ssn_7": "0", "wr_ssn_7": 0.0, "games_ssn_7": "0"
}
try:
# Find all champion boxes directly
champion_boxes = season_champ_box.find_elements(By.CSS_SELECTOR, "div.champion-box")
for i, box in enumerate(champion_boxes[:7], 1):
try:
# Extract champion name
champ_name = box.find_element(By.CSS_SELECTOR, "div.name a").text.strip()
# Extract CS stats and CPM
cs_text = box.find_element(By.CSS_SELECTOR, "div.cs").text.strip()
cs_parts = cs_text.split()
cs_stats = cs_parts[1] if len(cs_parts) > 1 else "0"
# Extract CPM from parentheses
cpm = cs_parts[2].strip('()') if len(cs_parts) > 2 else "0"
# Extract KDA ratio
kda_element = box.find_element(By.CSS_SELECTOR, "div.kda div[class^='css-']")
kda_text = kda_element.text.strip()
kda_ratio = kda_text.replace(" KDA", "").replace(":1", "").strip()
# Extract K/D/A averages
kda_detail = box.find_element(By.CSS_SELECTOR, "div.kda div.detail").text.strip()
k, d, a = map(str.strip, kda_detail.split('/'))
# Extract win rate
win_rate_element = box.find_element(By.CSS_SELECTOR, "div.played div[class^='css-']")
win_rate_text = win_rate_element.text.strip()
win_rate = float(win_rate_text.replace('%', '')) / 100
# Extract games played
games_text = box.find_element(By.CSS_SELECTOR, "div.played div.count").text.strip()
games_played = games_text.replace(" Played", "")
# Update flat dictionary
season_data[f"season_champ_{i}"] = champ_name
season_data[f"cs_ssn_{i}"] = cs_stats
season_data[f"cpm_ssn_{i}"] = cpm
season_data[f"kda_ssn_{i}"] = kda_ratio
season_data[f"k_ssn_{i}"] = k
season_data[f"d_ssn_{i}"] = d
season_data[f"a_ssn_{i}"] = a
season_data[f"wr_ssn_{i}"] = win_rate
season_data[f"games_ssn_{i}"] = games_played
except Exception as e:
print(f"Error processing champion {i}: {str(e)}")
print(f"Error type: {type(e).__name__}")
except Exception as e:
print(f"Error in get_season_data main block: {str(e)}")
print(f"Error type: {type(e).__name__}")
return season_data
def get_mastery_data(driver):
# Initialize dictionary with metadata
mastery_data = { }
try:
# Wait for container to load
WebDriverWait(driver, 20).until(
EC.presence_of_element_located((By.CSS_SELECTOR, "div.css-zefc5s.e1poynyt0"))
)
# Get all champion boxes (limiting to first 16)
champion_boxes = driver.find_elements(By.CSS_SELECTOR, "div.css-8fea4f.e1poynyt1")[:16]
# Process each champion
for i, champion in enumerate(champion_boxes, 1):
try:
name = champion.find_element(By.CSS_SELECTOR, "strong.champion-name").text.strip()
level = champion.find_element(By.CSS_SELECTOR, "div.champion-level__text > span").text.strip()
#points = champion.find_element(By.CSS_SELECTOR, "div.champion-point > span").text.strip()
mastery_data[f"mastery_champ_{i}"] = name
mastery_data[f"m_lv_{i}"] = level
#mastery_data[f"m_points_{i}"] = points.replace(",", "")
except Exception as e:
print(f"Error processing champion {i}: {e}")
mastery_data[f"mastery_champ_{i}"] = None
mastery_data[f"m_lv_{i}"] = "0"
#mastery_data[f"m_points_{i}"] = "0"
except Exception as e:
print(f"Error scraping mastery data: {e}")
return mastery_data
def get_player_stats(region, username):
"""Main function to get player statistics"""
driver = None
try:
driver = setup_driver()
# Format URLs
profile_url = BASE_URL.format(region=region, username=username)
mastery_url = MASTERY_URL.format(region=region, username=username)
# Get main profile data
driver.get(profile_url)
# Find main containers
main_container = wait_and_find_element(driver, "#content-container")
if not main_container:
raise Exception("Could not find main container")
stats_box = wait_and_find_element(
driver,
"div.stats-box.stats-box--SOLORANKED"
)
season_champ_box = wait_and_find_element(
driver,
"div:nth-child(1) > div.css-18w3o0f.ere6j7v0"
)
ranked_7d_box = wait_and_find_element(
driver,
"div[class*='efsztyx0']"
)
# Extract all stats
player_data = {
'recent_stats': get_recent_stats(stats_box) if stats_box else None,
'recent_champions': get_recent_champions(stats_box) if stats_box else None,
'preferred_roles': get_preferred_role(stats_box) if stats_box else None,
'season_data': get_season_data(season_champ_box) if season_champ_box else None,
'weekly_stats': get_weekly_stats(ranked_7d_box) if ranked_7d_box else None,
}
# Get mastery data
driver.get(mastery_url)
mastery_data = get_mastery_data(driver)
player_data['mastery_data'] = mastery_data
# Create DataFrames
dfs = {}
for key, data in player_data.items():
if data:
dfs[key] = pd.DataFrame([data])
# Add player ID and region to each DataFrame
for df in dfs.values():
df.insert(0, 'player_id', username) # Insert player_id as first column
df.insert(1, 'region', region) # Insert region as second column
# Merge all DataFrames into one
merged_df = None
for name, df in dfs.items():
if merged_df is None:
merged_df = df
else:
# Drop common columns except player_id and region
common_cols = df.columns.intersection(merged_df.columns)
cols_to_drop = [col for col in common_cols if col not in ['player_id', 'region']]
df_to_merge = df.drop(columns=cols_to_drop, errors='ignore')
merged_df = pd.merge(merged_df, df_to_merge, on=['player_id', 'region'], how='outer')
# Ensure player_id and region are the first columns in final order
if merged_df is not None and not merged_df.empty:
# Get all columns except player_id and region
other_cols = [col for col in merged_df.columns if col not in ['player_id', 'region']]
# Reorder columns with player_id and region first
merged_df = merged_df[['player_id', 'region'] + other_cols]
# # Save merged DataFrame
# save_dir = "util/data"
# os.makedirs(save_dir, exist_ok=True)
# if merged_df is not None and not merged_df.empty:
# filepath = os.path.join(save_dir, f"player_stats.csv")
# merged_df.to_csv(filepath, index=False)
# print(f"Saved player stats to {filepath}")
return merged_df, dfs
except Exception as e:
print(f"Error in get_player_stats: {e}")
return None, {}
finally:
if driver:
driver.quit()
def get_multiple_player_stats(players_df):
"""
Get stats for multiple players from a DataFrame
Parameters:
players_df: DataFrame with columns 'region' and 'username'
"""
all_merged_dfs = []
error_players = []
save_dir = "util/data"
os.makedirs(save_dir, exist_ok=True)
checkpoint_file = os.path.join(save_dir, "player_stats_checkpoint.csv")
all_merged_dfs = []
error_players = []
# Load checkpoint if exists
start_idx = 0
if os.path.exists(checkpoint_file):
try:
checkpoint_df = pd.read_csv(checkpoint_file)
all_merged_dfs = [checkpoint_df]
# Get the number of players already processed
processed_players = set(checkpoint_df['player_id'])
# Filter out already processed players
players_df = players_df[~players_df['username'].isin(processed_players)]
print(f"Loaded checkpoint with {len(processed_players)} players already processed")
except Exception as e:
print(f"Error loading checkpoint: {e}")
print(f"Processing {len(players_df)} remaining players...")
for idx, row in players_df.iterrows():
region = row['region'].lower() # Ensure region is lowercase
username = row['username']
try:
# Format the username
formatted_username = format_summoner_name(username)
print(f"\nProcessing player {idx + 1}/{len(players_df)}: {username} ({region})")
print(f"Formatted username: {formatted_username}")
# Add delay between requests
if idx > 0:
time.sleep(2)
merged_df, _ = get_player_stats(region, formatted_username)
if merged_df is not None and not merged_df.empty:
# Store original username in the DataFrame
merged_df['player_id'] = username # Store original username
all_merged_dfs.append(merged_df)
print(f"Successfully processed {username}")
# Save checkpoint every 10 players
if len(all_merged_dfs) % 10 == 0:
checkpoint_save = pd.concat(all_merged_dfs, ignore_index=True)
checkpoint_save.to_csv(checkpoint_file, index=False)
print(f"Saved checkpoint after processing {len(all_merged_dfs)} players")
else:
print(f"No data found for {username}")
error_players.append({
'region': region,
'username': username,
'formatted_username': formatted_username,
'error': 'No data found'
})
except Exception as e:
print(f"Error processing {username}: {e}")
error_players.append({
'region': region,
'username': username,
'formatted_username': formatted_username if 'formatted_username' in locals() else 'Error in formatting',
'error': str(e)
})
continue
# Combine and save final results
if all_merged_dfs:
final_df = pd.concat(all_merged_dfs, ignore_index=True)
# Save final combined stats
filepath = os.path.join(save_dir, "player_stats.csv")
final_df.to_csv(filepath, index=False)
print(f"\nSaved combined stats for {len(all_merged_dfs)} players to {filepath}")
# Clean up checkpoint file
if os.path.exists(checkpoint_file):
os.remove(checkpoint_file)
print("Removed checkpoint file after successful completion")
# Save error log
if error_players:
error_df = pd.DataFrame(error_players)
error_filepath = os.path.join(save_dir, "player_stats_errors.csv")
error_df.to_csv(error_filepath, index=False)
print(f"Saved error log to {error_filepath}")
return final_df
else:
print("\nNo player data was collected")
return None |