Spaces:
Sleeping
Sleeping
File size: 18,914 Bytes
abcb943 f067acf abcb943 8c94d1f 7f1dc32 8c94d1f 19e44c2 f067acf 8c94d1f abcb943 7f1dc32 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 3224c57 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 19e44c2 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 6d09e09 abcb943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
import time, os
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import pandas as pd
from urllib.parse import unquote
from webdriver_manager.chrome import ChromeDriverManager
from webdriver_manager.core.os_manager import ChromeType
from helper import convert_to_minutes, convert_percentage_to_decimal, convert_tier_to_number, convert_result_to_binary, format_summoner_name, convert_to_displayname
def setup_driver():
options = Options()
prefs = {
'profile.default_content_setting_values': {'notifications': 2},
'profile.managed_default_content_settings': {'images': 2}
}
options.add_experimental_option('prefs', prefs)
options.add_experimental_option('excludeSwitches', ['enable-logging'])
for arg in ['--headless', '--no-sandbox', '--disable-dev-shm-usage',
'--disable-gpu', '--window-size=1920,1080']:
options.add_argument(arg)
options.add_argument('user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/91.0.4472.124')
# Check if we're running in Hugging Face Spaces or locally
if 'HF_SPACE' in os.environ:
# Hugging Face Space is detected, handle accordingly (example for versioning)
print("Running on Hugging Face Space.")
chromedriver_path = ChromeDriverManager().install()
else:
# Local environment setup
print("Running chrome webdriver.")
chromedriver_path = ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install()
# Create the Service object using the installed chromedriver
service = Service(executable_path=chromedriver_path)
# Return the configured WebDriver instance
driver = webdriver.Chrome(service=service, options=options)
return driver
def get_tooltip_date(driver, element):
try:
driver.execute_script("""
arguments[0].scrollIntoView({block: 'center'});
document.querySelectorAll('span.react-tooltip-lite').forEach(e => e.remove());
arguments[0].dispatchEvent(new MouseEvent('mouseover', {
view: window, bubbles: true, cancelable: true
}));
""", element)
time.sleep(0.3)
return driver.execute_script("""
return Array.from(document.querySelectorAll('span.react-tooltip-lite'))
.find(t => t.offsetParent !== null)?.textContent || null;
""")
except: return None
def extract_match_data(match):
selectors = {
'time_stamp': "div.time-stamp > div",
'game_type': "div.game-type",
'result': "div.result",
'length': "div.length",
'kda': "div.kda",
'kda_ratio': "div.kda-ratio",
'cs': "div.cs",
'avg_tier': "div.avg-tier",
'laning': "div.laning",
'kill_participation': "div.p-kill",
'champion_img': "div.info a.champion img",
'champion_level': "div.info a.champion span.champion-level"
}
data = {}
try:
for key, selector in selectors.items():
element = match.find_element(By.CSS_SELECTOR, selector)
if key == 'champion_img':
data[key] = element.get_attribute('alt')
elif key == 'laning':
data[key] = element.text.replace('\n', '') # Remove newlines from laning data
else:
data[key] = element.text
except Exception as e:
print(f"Error extracting match data: {e}")
return data
def get_players_info(match):
try:
players = []
player_elements = match.find_elements(By.CSS_SELECTOR, "div.css-pp7uqb.e1xevas21")[:10]
for player in player_elements:
champion = player.find_element(By.CSS_SELECTOR, "div.icon img").get_attribute("alt")
href = player.find_element(By.CSS_SELECTOR, "div.name a").get_attribute("href")
region, name = href.split('/')[-2:]
# Decode the URL-encoded name
decoded_name = unquote(name)
#print(f"Found player: {decoded_name} with champion {champion}")
players.append({
"champion": champion,
"region": region,
"name": decoded_name
})
return players
except Exception as e:
print(f"Error getting players info: {e}")
return []
def convert_laning_ratio(laning_str):
"""Convert laning string (e.g., 'Laning 70:30') to decimal ratio"""
try:
# Extract the ratio part (e.g., '70:30' from 'Laning 70:30')
ratio_part = laning_str.split('Laning')[-1].strip()
# Split by ':' and convert to numbers
first_num, second_num = map(int, ratio_part.split(':'))
# Calculate ratio
if second_num != 0: # Avoid division by zero
ratio = round(first_num / second_num, 2)
return ratio
return 0.0
except Exception as e:
print(f"Laning conversion error for '{laning_str}': {e}")
return 0.0
def extract_cs_number(cs_str):
"""Extract pure CS number from string (e.g., 'CS 123 (7.9)' -> 123)"""
try:
# Extract first number from the string
cs_number = ''.join(filter(str.isdigit, cs_str.split('(')[0]))
return int(cs_number) if cs_number else 0
except:
return 0
def extract_cs_per_min(cs_str):
"""Extract CS per minute from string (e.g., 'CS 123 (7.9)' -> 7.9)"""
try:
# Extract number between parentheses
cs_per_min = cs_str.split('(')[1].split(')')[0]
return float(cs_per_min)
except:
return 0.0
def process_match_data(match_data, username, players):
try:
# Format username for comparison - ensure it's in display format
display_name = convert_to_displayname(username)
#print(f"\nInput username: {username}")
#print(f"Converted display name: {display_name}")
# # Debug print all players and their converted names
# print("\nAll players:")
# for p in players:
# orig_name = p['name']
# conv_name = convert_to_displayname(orig_name)
# print(f"Original: {orig_name} -> Converted: {conv_name}")
# Find player index using normalized comparison
player_index = next((i for i, p in enumerate(players)
if convert_to_displayname(p['name']).lower().replace(' ', '') ==
display_name.lower().replace(' ', '')), -1)
if player_index == -1:
print(f"\nWarning: Player {display_name} not found in players list")
print("Available players:", [convert_to_displayname(p['name']) for p in players])
return None
#print(f"\nFound player at index: {player_index}")
team = "blue" if player_index < 5 else "red"
#print(f"Team: {team}")
# Modify how teammates and opponents are filtered
if player_index < 5:
# Player is on blue team
teammates = [p for i, p in enumerate(players[:5])
if i != player_index] # Use index comparison instead of name
opponents = players[5:] # All red team players
else:
# Player is on red team
teammates = [p for i, p in enumerate(players[5:])
if i != (player_index - 5)] # Adjust index for red team
opponents = players[:5] # All blue team players
kda_parts = match_data.get('kda', '0/0/0').strip().split('/')
kills, deaths, assists = [kda_parts[i] if i < len(kda_parts) else "0" for i in range(3)]
kda_ratio = match_data.get("kda_ratio", "0").strip().replace(":1 KDA", "")
kill_participation = convert_percentage_to_decimal(match_data.get("kill_participation", "0%"))
laning_ratio = convert_laning_ratio(match_data.get("laning", "0:0"))
cs = extract_cs_number(match_data.get("cs", "0"))
cpm = extract_cs_per_min(match_data.get("cs", "0"))
match_length_str = match_data.get("length", "0m 0s")
match_length_mins = convert_to_minutes(match_length_str)
# Convert tier to number
avg_tier_num = convert_tier_to_number(match_data.get("avg_tier", ""))
result_num = convert_result_to_binary(match_data.get("result", ""))
match_row = {
"player_id": display_name, # Use display_name here
"date": match_data.get("match_date", ""),
"champion": match_data.get("champion_img", ""),
"level": match_data.get("champion_level", ""),
"team": team,
"result": result_num,
"match_length_mins": match_length_mins,
"kill": kills.strip(),
"death": deaths.strip(),
"assist": assists.strip(),
"kda_ratio": kda_ratio,
"kill_participation": kill_participation,
"laning": laning_ratio,
"cs": cs,
"cs_per_min": cpm,
"avg_tier": avg_tier_num
}
# Add teammates and opponents with display format
for i, (team_list, prefix) in enumerate([(teammates, "team"), (opponents, "opp")]):
for j, player in enumerate(team_list, 1):
if j <= 5: # Ensure we don't exceed 5 players per team
match_row[f"{prefix}mates{j}"] = convert_to_displayname(player["name"])
match_row[f"{prefix}_champ{j}"] = player["champion"]
return match_row
except Exception as e:
print(f"Error processing match: {e}")
return None
def get_matches_stats(region, username, max_retries=2):
"""
Get match stats for a single player with retry mechanism
"""
print("=========================== inside get_matches_stats ===========================\n")
if not region or not username:
raise ValueError("Both 'region' and 'username' must be provided")
attempt_details = [] # To collect detailed logs for debugging
driver = None
retry_count = 0
while retry_count <= max_retries:
try:
# Initialize the WebDriver
attempt_details.append("Setting up WebDriver...")
driver = setup_driver()
driver.set_page_load_timeout(20) # Set page load timeout
attempt_details.append("WebDriver setup complete.")
# Construct the URL
url = f"https://www.op.gg/summoners/{region}/{username}?queue_type=SOLORANKED"
attempt_details.append(f"Accessing URL: {url}")
driver.get(url)
# Wait for matches container to load
attempt_details.append("Waiting for matches container...")
matches_container = WebDriverWait(driver, 20).until(
EC.presence_of_element_located((By.CSS_SELECTOR, "div.css-1jxewmm.ek41ybw0"))
)
attempt_details.append("Matches container found.")
# Find match elements
attempt_details.append("Finding match elements...")
match_elements = matches_container.find_elements(By.CSS_SELECTOR, "div.css-j7qwjs.ery81n90")
attempt_details.append(f"Found {len(match_elements)} matches.")
matches_data = []
# Process each match
for i, match in enumerate(match_elements, 1):
attempt_details.append(f"Processing match {i}...")
try:
# Extract data for the match
match_data = extract_match_data(match)
attempt_details.append(f"Extracted match data for match {i}: {match_data}")
# Get player info
players = get_players_info(match)
attempt_details.append(f"Extracted players info for match {i}: {players}")
# Get match date
tooltip_element = match.find_element(By.CSS_SELECTOR, "div.time-stamp > div")
match_date = get_tooltip_date(driver, tooltip_element)
match_data['match_date'] = match_date
attempt_details.append(f"Extracted match date for match {i}: {match_date}")
# Process and validate match data
processed_data = process_match_data(match_data, username, players)
if processed_data:
matches_data.append(processed_data)
attempt_details.append(f"Processed match data for match {i}: {processed_data}")
else:
attempt_details.append(f"Processed match {i} returned no valid data.")
except Exception as match_error:
raise RuntimeError(f"Error processing match {i}: {match_error}")
# Return DataFrame if matches are found
if matches_data:
print("=========================== Exiting get_matches_stats successfully ===========================\n")
return pd.DataFrame(matches_data)
else:
raise RuntimeError("No valid matches found")
except Exception as e:
retry_count += 1
attempt_details.append(f"Attempt {retry_count} failed: {e}")
if retry_count <= max_retries:
attempt_details.append(f"Retrying... ({retry_count}/{max_retries})")
time.sleep(5) # Wait 5 seconds before retrying
else:
attempt_details.append("Max retries reached. No data retrieved.")
error_log = "\n".join(attempt_details)
raise RuntimeError(f"get_matches_stats failed after {max_retries} retries:\n{error_log}")
finally:
if driver:
attempt_details.append("Closing WebDriver...")
driver.quit()
attempt_details.append("WebDriver closed.")
error_log = "\n".join(attempt_details)
raise RuntimeError(f"Exiting get_matches_stats with no data:\n{error_log}")
def get_multiple_matches_stats(players_df):
"""
Get match stats for multiple players from a DataFrame
Parameters:
players_df: DataFrame with columns 'region' and 'username'
"""
save_dir = "util/data"
os.makedirs(save_dir, exist_ok=True)
checkpoint_file = os.path.join(save_dir, "recent_matches_checkpoint.csv")
all_matches_dfs = []
error_players = []
# Load checkpoint if exists
start_idx = 0
if os.path.exists(checkpoint_file):
try:
checkpoint_df = pd.read_csv(checkpoint_file)
all_matches_dfs = [checkpoint_df]
# Get the number of players already processed
processed_players = set(checkpoint_df['player_id'])
# Filter out already processed players
players_df = players_df[~players_df['username'].isin(processed_players)]
print(f"Loaded checkpoint with {len(processed_players)} players already processed")
except Exception as e:
print(f"Error loading checkpoint: {e}")
print(f"Processing matches for {len(players_df)} remaining players...")
for idx, row in players_df.iterrows():
region = row['region'].lower() # Ensure region is lowercase
username = row['username']
try:
# Format the username
formatted_username = format_summoner_name(username)
print(f"\nProcessing matches for player {idx + 1}/{len(players_df)}: {username} ({region})")
#print(f"Formatted username: {formatted_username}")
# Add delay between requests
if idx > 0:
time.sleep(2)
matches_df = get_matches_stats(region, formatted_username)
if matches_df is not None and not matches_df.empty:
# Add player identification columns
matches_df['player_id'] = username # Original username
matches_df['region'] = region
all_matches_dfs.append(matches_df)
print(f"Successfully processed matches for {username}")
#print(f"Found {len(matches_df)} matches")
# Save checkpoint every 5 players
if len(all_matches_dfs) % 5 == 0:
checkpoint_save = pd.concat(all_matches_dfs, ignore_index=True)
checkpoint_save.to_csv(checkpoint_file, index=False)
print(f"Saved checkpoint after processing {len(all_matches_dfs)} players")
else:
print(f"No match data found for {username}")
error_players.append({
'region': region,
'username': username,
'formatted_username': formatted_username,
'error': 'No match data found'
})
except Exception as e:
print(f"Error processing matches for {username}: {e}")
error_players.append({
'region': region,
'username': username,
'formatted_username': formatted_username if 'formatted_username' in locals() else 'Error in formatting',
'error': str(e)
})
continue
# Combine all match stats
if all_matches_dfs:
final_df = pd.concat(all_matches_dfs, ignore_index=True)
filepath = os.path.join(save_dir, f"recent_matches.csv")
final_df.to_csv(filepath, index=False)
print(f"\nSaved combined match stats for {len(all_matches_dfs)} players to {filepath}")
# Clean up checkpoint file
if os.path.exists(checkpoint_file):
os.remove(checkpoint_file)
print("Removed checkpoint file after successful completion")
# Save error log if any errors occurred
if error_players:
error_df = pd.DataFrame(error_players)
error_filepath = os.path.join(save_dir, f"recent_matches_error.csv")
error_df.to_csv(error_filepath, index=False)
print(f"Saved error log to {error_filepath}")
# Print summary
print("\nSummary:")
print(f"Total players processed: {len(players_df)}")
print(f"Successful: {len(all_matches_dfs)}")
print(f"Failed: {len(error_players)}")
print(f"Total matches collected: {len(final_df)}")
return final_df
else:
print("\nNo match data was collected")
return None
|