File size: 18,914 Bytes
abcb943
 
 
 
 
 
 
 
 
 
f067acf
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
8c94d1f
 
 
 
 
 
7f1dc32
8c94d1f
 
19e44c2
f067acf
8c94d1f
 
 
 
 
 
 
 
 
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f1dc32
 
 
6d09e09
 
 
 
 
abcb943
 
6d09e09
abcb943
 
6d09e09
 
abcb943
 
6d09e09
 
 
abcb943
6d09e09
abcb943
3224c57
6d09e09
 
abcb943
 
 
6d09e09
 
 
 
abcb943
6d09e09
 
 
abcb943
6d09e09
abcb943
6d09e09
abcb943
6d09e09
abcb943
6d09e09
 
 
abcb943
6d09e09
 
 
 
 
 
 
 
 
abcb943
 
 
6d09e09
 
 
 
 
 
abcb943
6d09e09
abcb943
19e44c2
abcb943
 
6d09e09
 
abcb943
 
6d09e09
abcb943
6d09e09
abcb943
 
6d09e09
 
 
 
abcb943
 
6d09e09
abcb943
6d09e09
 
 
 
 
abcb943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import time, os
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import pandas as pd
from urllib.parse import unquote
from webdriver_manager.chrome import ChromeDriverManager
from webdriver_manager.core.os_manager import ChromeType
from helper import convert_to_minutes, convert_percentage_to_decimal, convert_tier_to_number, convert_result_to_binary, format_summoner_name, convert_to_displayname

def setup_driver():
    options = Options()
    prefs = {
        'profile.default_content_setting_values': {'notifications': 2},
        'profile.managed_default_content_settings': {'images': 2}
    }
    options.add_experimental_option('prefs', prefs)
    options.add_experimental_option('excludeSwitches', ['enable-logging'])
    for arg in ['--headless', '--no-sandbox', '--disable-dev-shm-usage', 
                '--disable-gpu', '--window-size=1920,1080']:
        options.add_argument(arg)
    options.add_argument('user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/91.0.4472.124')

    
    # Check if we're running in Hugging Face Spaces or locally
    if 'HF_SPACE' in os.environ:
        # Hugging Face Space is detected, handle accordingly (example for versioning)
        print("Running on Hugging Face Space.")
        chromedriver_path = ChromeDriverManager().install()
    else:
        # Local environment setup
        print("Running chrome webdriver.")
        chromedriver_path = ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install()

    # Create the Service object using the installed chromedriver
    service = Service(executable_path=chromedriver_path)

    # Return the configured WebDriver instance
    driver = webdriver.Chrome(service=service, options=options)
    
    return driver

def get_tooltip_date(driver, element):
    try:
        driver.execute_script("""
            arguments[0].scrollIntoView({block: 'center'});
            document.querySelectorAll('span.react-tooltip-lite').forEach(e => e.remove());
            arguments[0].dispatchEvent(new MouseEvent('mouseover', {
                view: window, bubbles: true, cancelable: true
            }));
        """, element)
        time.sleep(0.3)
        return driver.execute_script("""
            return Array.from(document.querySelectorAll('span.react-tooltip-lite'))
                .find(t => t.offsetParent !== null)?.textContent || null;
        """)
    except: return None
    
def extract_match_data(match):
    selectors = {
        'time_stamp': "div.time-stamp > div",
        'game_type': "div.game-type",
        'result': "div.result",
        'length': "div.length",
        'kda': "div.kda",
        'kda_ratio': "div.kda-ratio",
        'cs': "div.cs",
        'avg_tier': "div.avg-tier",
        'laning': "div.laning",
        'kill_participation': "div.p-kill",
        'champion_img': "div.info a.champion img",
        'champion_level': "div.info a.champion span.champion-level"
    }
    
    data = {}
    try:
        for key, selector in selectors.items():
            element = match.find_element(By.CSS_SELECTOR, selector)
            if key == 'champion_img':
                data[key] = element.get_attribute('alt')
            elif key == 'laning':
                data[key] = element.text.replace('\n', '')  # Remove newlines from laning data
            else:
                data[key] = element.text
    except Exception as e:
        print(f"Error extracting match data: {e}")
    return data

def get_players_info(match):
    try:
        players = []
        player_elements = match.find_elements(By.CSS_SELECTOR, "div.css-pp7uqb.e1xevas21")[:10]
        for player in player_elements:
            champion = player.find_element(By.CSS_SELECTOR, "div.icon img").get_attribute("alt")
            href = player.find_element(By.CSS_SELECTOR, "div.name a").get_attribute("href")
            region, name = href.split('/')[-2:]
            # Decode the URL-encoded name
            decoded_name = unquote(name)
            #print(f"Found player: {decoded_name} with champion {champion}")
            players.append({
                "champion": champion, 
                "region": region, 
                "name": decoded_name
            })
        return players
    except Exception as e:
        print(f"Error getting players info: {e}")
        return []

def convert_laning_ratio(laning_str):
    """Convert laning string (e.g., 'Laning 70:30') to decimal ratio"""
    try:
        # Extract the ratio part (e.g., '70:30' from 'Laning 70:30')
        ratio_part = laning_str.split('Laning')[-1].strip()
        
        # Split by ':' and convert to numbers
        first_num, second_num = map(int, ratio_part.split(':'))
        
        # Calculate ratio
        if second_num != 0:  # Avoid division by zero
            ratio = round(first_num / second_num, 2)
            return ratio
        return 0.0
    except Exception as e:
        print(f"Laning conversion error for '{laning_str}': {e}")
        return 0.0
    
def extract_cs_number(cs_str):
    """Extract pure CS number from string (e.g., 'CS 123 (7.9)' -> 123)"""
    try:
        # Extract first number from the string
        cs_number = ''.join(filter(str.isdigit, cs_str.split('(')[0]))
        return int(cs_number) if cs_number else 0
    except:
        return 0
    
def extract_cs_per_min(cs_str):
    """Extract CS per minute from string (e.g., 'CS 123 (7.9)' -> 7.9)"""
    try:
        # Extract number between parentheses
        cs_per_min = cs_str.split('(')[1].split(')')[0]
        return float(cs_per_min)
    except:
        return 0.0

def process_match_data(match_data, username, players):
    try:
        # Format username for comparison - ensure it's in display format
        display_name = convert_to_displayname(username)
        #print(f"\nInput username: {username}")
        #print(f"Converted display name: {display_name}")
        
        # # Debug print all players and their converted names
        # print("\nAll players:")
        # for p in players:
        #     orig_name = p['name']
        #     conv_name = convert_to_displayname(orig_name)
        #     print(f"Original: {orig_name} -> Converted: {conv_name}")
        
        # Find player index using normalized comparison
        player_index = next((i for i, p in enumerate(players) 
                           if convert_to_displayname(p['name']).lower().replace(' ', '') == 
                           display_name.lower().replace(' ', '')), -1)
        
        if player_index == -1:
            print(f"\nWarning: Player {display_name} not found in players list")
            print("Available players:", [convert_to_displayname(p['name']) for p in players])
            return None
            
        #print(f"\nFound player at index: {player_index}")
        team = "blue" if player_index < 5 else "red"
        #print(f"Team: {team}")
            
        
        # Modify how teammates and opponents are filtered
        if player_index < 5:
            # Player is on blue team
            teammates = [p for i, p in enumerate(players[:5]) 
                       if i != player_index]  # Use index comparison instead of name
            opponents = players[5:]  # All red team players
        else:
            # Player is on red team
            teammates = [p for i, p in enumerate(players[5:]) 
                       if i != (player_index - 5)]  # Adjust index for red team
            opponents = players[:5]  # All blue team players
        
        kda_parts = match_data.get('kda', '0/0/0').strip().split('/')
        kills, deaths, assists = [kda_parts[i] if i < len(kda_parts) else "0" for i in range(3)]
        kda_ratio = match_data.get("kda_ratio", "0").strip().replace(":1 KDA", "")

        kill_participation = convert_percentage_to_decimal(match_data.get("kill_participation", "0%"))

        laning_ratio = convert_laning_ratio(match_data.get("laning", "0:0"))

        cs = extract_cs_number(match_data.get("cs", "0"))
        cpm = extract_cs_per_min(match_data.get("cs", "0"))

        match_length_str = match_data.get("length", "0m 0s")
        match_length_mins = convert_to_minutes(match_length_str)

        # Convert tier to number
        avg_tier_num = convert_tier_to_number(match_data.get("avg_tier", ""))

        result_num = convert_result_to_binary(match_data.get("result", ""))
        
        match_row = {
            "player_id": display_name,  # Use display_name here
            "date": match_data.get("match_date", ""),
            "champion": match_data.get("champion_img", ""),
            "level": match_data.get("champion_level", ""),
            "team": team,
            "result": result_num,
            "match_length_mins": match_length_mins, 
            "kill": kills.strip(),
            "death": deaths.strip(),
            "assist": assists.strip(),
            "kda_ratio": kda_ratio,
            "kill_participation": kill_participation,
            "laning": laning_ratio,
            "cs": cs,
            "cs_per_min": cpm,
            "avg_tier": avg_tier_num
        }
        
        # Add teammates and opponents with display format
        for i, (team_list, prefix) in enumerate([(teammates, "team"), (opponents, "opp")]):
            for j, player in enumerate(team_list, 1):
                if j <= 5:  # Ensure we don't exceed 5 players per team
                    match_row[f"{prefix}mates{j}"] = convert_to_displayname(player["name"])
                    match_row[f"{prefix}_champ{j}"] = player["champion"]
                
        return match_row
    except Exception as e:
        print(f"Error processing match: {e}")
        return None

def get_matches_stats(region, username, max_retries=2):
    """
    Get match stats for a single player with retry mechanism
    """

    print("=========================== inside get_matches_stats ===========================\n")

    if not region or not username:
        raise ValueError("Both 'region' and 'username' must be provided")

    attempt_details = []  # To collect detailed logs for debugging
    
    driver = None
    retry_count = 0

    while retry_count <= max_retries:
        try:
            # Initialize the WebDriver
            attempt_details.append("Setting up WebDriver...")
            driver = setup_driver()
            driver.set_page_load_timeout(20)  # Set page load timeout
            attempt_details.append("WebDriver setup complete.")

            # Construct the URL
            url = f"https://www.op.gg/summoners/{region}/{username}?queue_type=SOLORANKED"
            attempt_details.append(f"Accessing URL: {url}")
            driver.get(url)

            # Wait for matches container to load
            attempt_details.append("Waiting for matches container...")
            matches_container = WebDriverWait(driver, 20).until(
                EC.presence_of_element_located((By.CSS_SELECTOR, "div.css-1jxewmm.ek41ybw0"))
            )
            attempt_details.append("Matches container found.")

            # Find match elements
            attempt_details.append("Finding match elements...")
            match_elements = matches_container.find_elements(By.CSS_SELECTOR, "div.css-j7qwjs.ery81n90")
            attempt_details.append(f"Found {len(match_elements)} matches.")

            matches_data = []
            
            # Process each match
            for i, match in enumerate(match_elements, 1):
                attempt_details.append(f"Processing match {i}...")
                try:
                    # Extract data for the match
                    match_data = extract_match_data(match)
                    attempt_details.append(f"Extracted match data for match {i}: {match_data}")

                    # Get player info
                    players = get_players_info(match)
                    attempt_details.append(f"Extracted players info for match {i}: {players}")

                    # Get match date
                    tooltip_element = match.find_element(By.CSS_SELECTOR, "div.time-stamp > div")
                    match_date = get_tooltip_date(driver, tooltip_element)
                    match_data['match_date'] = match_date
                    attempt_details.append(f"Extracted match date for match {i}: {match_date}")

                    # Process and validate match data
                    processed_data = process_match_data(match_data, username, players)
                    if processed_data:
                        matches_data.append(processed_data)
                        attempt_details.append(f"Processed match data for match {i}: {processed_data}")
                    else:
                        attempt_details.append(f"Processed match {i} returned no valid data.")

                except Exception as match_error:
                    raise RuntimeError(f"Error processing match {i}: {match_error}")
            
            # Return DataFrame if matches are found
            if matches_data:
                print("=========================== Exiting get_matches_stats successfully ===========================\n")
                return pd.DataFrame(matches_data)
            else:
                raise RuntimeError("No valid matches found")

        except Exception as e:
            retry_count += 1
            attempt_details.append(f"Attempt {retry_count} failed: {e}")
            if retry_count <= max_retries:
                attempt_details.append(f"Retrying... ({retry_count}/{max_retries})")
                time.sleep(5)  # Wait 5 seconds before retrying
            else:
                attempt_details.append("Max retries reached. No data retrieved.")
                error_log = "\n".join(attempt_details)
                raise RuntimeError(f"get_matches_stats failed after {max_retries} retries:\n{error_log}")

        finally:
            if driver:
                attempt_details.append("Closing WebDriver...")
                driver.quit()
                attempt_details.append("WebDriver closed.")

    error_log = "\n".join(attempt_details)
    raise RuntimeError(f"Exiting get_matches_stats with no data:\n{error_log}")


def get_multiple_matches_stats(players_df):
    """
    Get match stats for multiple players from a DataFrame
    
    Parameters:
    players_df: DataFrame with columns 'region' and 'username'
    """
    save_dir = "util/data"
    os.makedirs(save_dir, exist_ok=True)
    checkpoint_file = os.path.join(save_dir, "recent_matches_checkpoint.csv")
    all_matches_dfs = []
    error_players = []
    
    # Load checkpoint if exists
    start_idx = 0
    if os.path.exists(checkpoint_file):
        try:
            checkpoint_df = pd.read_csv(checkpoint_file)
            all_matches_dfs = [checkpoint_df]
            # Get the number of players already processed
            processed_players = set(checkpoint_df['player_id'])
            # Filter out already processed players
            players_df = players_df[~players_df['username'].isin(processed_players)]
            print(f"Loaded checkpoint with {len(processed_players)} players already processed")
        except Exception as e:
            print(f"Error loading checkpoint: {e}")
    
    print(f"Processing matches for {len(players_df)} remaining players...")
    
    for idx, row in players_df.iterrows():
        region = row['region'].lower()  # Ensure region is lowercase
        username = row['username']
        
        try:
            # Format the username
            formatted_username = format_summoner_name(username)
            print(f"\nProcessing matches for player {idx + 1}/{len(players_df)}: {username} ({region})")
            #print(f"Formatted username: {formatted_username}")
            
            # Add delay between requests
            if idx > 0:
                time.sleep(2)
                
            matches_df = get_matches_stats(region, formatted_username)
            
            if matches_df is not None and not matches_df.empty:
                # Add player identification columns
                matches_df['player_id'] = username  # Original username
                matches_df['region'] = region
                all_matches_dfs.append(matches_df)
                print(f"Successfully processed matches for {username}")
                #print(f"Found {len(matches_df)} matches")

                 # Save checkpoint every 5 players
                if len(all_matches_dfs) % 5 == 0:
                    checkpoint_save = pd.concat(all_matches_dfs, ignore_index=True)
                    checkpoint_save.to_csv(checkpoint_file, index=False)
                    print(f"Saved checkpoint after processing {len(all_matches_dfs)} players")

            else:
                print(f"No match data found for {username}")
                error_players.append({
                    'region': region,
                    'username': username,
                    'formatted_username': formatted_username,
                    'error': 'No match data found'
                })
                
        except Exception as e:
            print(f"Error processing matches for {username}: {e}")
            error_players.append({
                'region': region,
                'username': username,
                'formatted_username': formatted_username if 'formatted_username' in locals() else 'Error in formatting',
                'error': str(e)
            })
            continue

    # Combine all match stats
    if all_matches_dfs:
        final_df = pd.concat(all_matches_dfs, ignore_index=True)
                
        filepath = os.path.join(save_dir, f"recent_matches.csv")
        final_df.to_csv(filepath, index=False)
        print(f"\nSaved combined match stats for {len(all_matches_dfs)} players to {filepath}")

        # Clean up checkpoint file
        if os.path.exists(checkpoint_file):
            os.remove(checkpoint_file)
            print("Removed checkpoint file after successful completion")
        
        # Save error log if any errors occurred
        if error_players:
            error_df = pd.DataFrame(error_players)
            error_filepath = os.path.join(save_dir, f"recent_matches_error.csv")
            error_df.to_csv(error_filepath, index=False)
            print(f"Saved error log to {error_filepath}")
        
        # Print summary
        print("\nSummary:")
        print(f"Total players processed: {len(players_df)}")
        print(f"Successful: {len(all_matches_dfs)}")
        print(f"Failed: {len(error_players)}")
        print(f"Total matches collected: {len(final_df)}")
        
        return final_df
    else:
        print("\nNo match data was collected")
        return None