Jimin Park commited on
Commit
0e5818e
·
1 Parent(s): 0093d11

kermitting soon

Browse files
Files changed (1) hide show
  1. util/helper.py +7 -5
util/helper.py CHANGED
@@ -903,16 +903,16 @@ def calculate_role_specialization(df):
903
  def calculate_champion_loyalty(df):
904
  print("========================== Inside: calculate_champion_loyalty ====================\n")
905
  df = df.copy()
906
- print("df.dtypes: ", df.dtypes, "\n")
907
 
908
 
909
  def get_loyalty_scores(row):
910
  try:
911
  # Convert potentially non-numeric values to numbers !!!!!!!!!!!!!! chatGPT EDITED
912
- row['W_1'] = pd.to_numeric(row['W_1'], errors='coerce') if 'W_1' in row else 0
913
- row['L_1'] = pd.to_numeric(row['L_1'], errors='coerce') if 'L_1' in row else 0
914
- row['W_2'] = pd.to_numeric(row['W_2'], errors='coerce') if 'W_2' in row else 0
915
- row['L_2'] = pd.to_numeric(row['L_2'], errors='coerce') if 'L_2' in row else 0
916
 
917
  # Get champions lists, handle potential NaN/None values (only top 2)
918
  recent_champs = [
@@ -950,6 +950,7 @@ def calculate_champion_loyalty(df):
950
  }
951
 
952
  # Calculate games played for recent champions (only top 2)
 
953
  recent_games = [
954
  (row['W_1'] + row['L_1']) if pd.notna(row['most_champ_1']) else 0,
955
  (row['W_2'] + row['L_2']) if pd.notna(row['most_champ_2']) else 0
@@ -983,6 +984,7 @@ def calculate_champion_loyalty(df):
983
 
984
  loyalty_score += combined_weight
985
 
 
986
  # Calculate confidence score (adjusted for 2 champions)
987
  confidence_score = 0
988
  confidence_score += 0.5 if pd.notna(row['most_champ_1']) else 0 # Increased weight for main
 
903
  def calculate_champion_loyalty(df):
904
  print("========================== Inside: calculate_champion_loyalty ====================\n")
905
  df = df.copy()
906
+ print("df.dtypes: \n", df.dtypes, "\n")
907
 
908
 
909
  def get_loyalty_scores(row):
910
  try:
911
  # Convert potentially non-numeric values to numbers !!!!!!!!!!!!!! chatGPT EDITED
912
+ # row['W_1'] = pd.to_numeric(row['W_1'], errors='coerce') if 'W_1' in row else 0
913
+ # row['L_1'] = pd.to_numeric(row['L_1'], errors='coerce') if 'L_1' in row else 0
914
+ # row['W_2'] = pd.to_numeric(row['W_2'], errors='coerce') if 'W_2' in row else 0
915
+ # row['L_2'] = pd.to_numeric(row['L_2'], errors='coerce') if 'L_2' in row else 0
916
 
917
  # Get champions lists, handle potential NaN/None values (only top 2)
918
  recent_champs = [
 
950
  }
951
 
952
  # Calculate games played for recent champions (only top 2)
953
+ print("Start calculate games played for recent champions (only top 2)...\n")
954
  recent_games = [
955
  (row['W_1'] + row['L_1']) if pd.notna(row['most_champ_1']) else 0,
956
  (row['W_2'] + row['L_2']) if pd.notna(row['most_champ_2']) else 0
 
984
 
985
  loyalty_score += combined_weight
986
 
987
+ print("Start calculate confidence score...\n")
988
  # Calculate confidence score (adjusted for 2 champions)
989
  confidence_score = 0
990
  confidence_score += 0.5 if pd.notna(row['most_champ_1']) else 0 # Increased weight for main