Jimin Park commited on
Commit
299f9c4
·
1 Parent(s): 0605202

kermitting soon

Browse files
Files changed (1) hide show
  1. util/app.py +69 -1
util/app.py CHANGED
@@ -44,6 +44,13 @@ except Exception as e:
44
  print(f"Error loading model: {e}")
45
  model = None
46
 
 
 
 
 
 
 
 
47
  # Functions
48
  def get_user_training_df(player_opgg_url):
49
  try:
@@ -67,7 +74,7 @@ def get_user_training_df(player_opgg_url):
67
  #return f"Error getting training data: {e}"
68
 
69
  def prepare_training_df(df, target_column='champion', stratify_columns=['champion', 'region'],
70
- min_samples_per_class=6, train_size=0.6, val_size=0.2, random_state=42):
71
  df = df.copy()
72
  original_dtypes = df.dtypes.to_dict()
73
 
@@ -200,6 +207,67 @@ def show_stats(player_opgg_url):
200
 
201
  def predict_champion(player_opgg_url, *champions):
202
  """Make prediction based on selected champions"""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
 
204
  print("============= Inside predict_champion()=================\n")
205
 
 
44
  print(f"Error loading model: {e}")
45
  model = None
46
 
47
+ try:
48
+ label_encoder = joblib.load('label_encoder.joblib')
49
+ print("Label encoder loaded successfully")
50
+ except Exception as e:
51
+ print(f"Error loading label encoder: {e}")
52
+ label_encoder = None
53
+
54
  # Functions
55
  def get_user_training_df(player_opgg_url):
56
  try:
 
74
  #return f"Error getting training data: {e}"
75
 
76
  def prepare_training_df(df, target_column='champion', stratify_columns=['champion', 'region'],
77
+ min_samples_per_class=2, train_size=0.6, val_size=0.2, random_state=42):
78
  df = df.copy()
79
  original_dtypes = df.dtypes.to_dict()
80
 
 
207
 
208
  def predict_champion(player_opgg_url, *champions):
209
  """Make prediction based on selected champions"""
210
+ if not player_opgg_url or None in champions:
211
+ return "Please fill in all fields"
212
+
213
+ try:
214
+ if model is None:
215
+ return "Model not loaded properly"
216
+
217
+ if label_encoder is None:
218
+ return "Label encoder not loaded properly"
219
+
220
+ # Get and process the data
221
+ training_df = get_user_training_df(player_opgg_url)
222
+
223
+ if isinstance(training_df, str): # Error message
224
+ return training_df
225
+
226
+ # Apply necessary transformations
227
+ training_df = convert_df(training_df)
228
+ training_df = apply_feature_engineering(training_df)
229
+
230
+ # Get feature columns (excluding champion and region)
231
+ feature_columns = [col for col in training_df.columns
232
+ if col not in ['champion', 'region', 'stratify_label']]
233
+ X = training_df[feature_columns]
234
+
235
+ # Handle categorical features
236
+ categorical_columns = X.select_dtypes(include=['category']).columns
237
+ X_processed = X.copy()
238
+
239
+ # Convert categorical columns to numeric
240
+ for col in categorical_columns:
241
+ X_processed[col] = X_processed[col].cat.codes
242
+
243
+ # Convert to float32
244
+ X_processed = X_processed.astype('float32')
245
+
246
+ # Create DMatrix with categorical feature support
247
+ dtest = DMatrix(X_processed, enable_categorical=True)
248
+
249
+ # Make prediction
250
+ predictions = model.predict(dtest)
251
+
252
+ # Get the highest probability prediction
253
+ if len(predictions.shape) > 1:
254
+ pred_indices = predictions.argmax(axis=1)
255
+ else:
256
+ pred_indices = predictions.astype(int)
257
+
258
+ # Decode predictions using loaded label encoder
259
+ decoded_preds = label_encoder.inverse_transform(pred_indices)
260
+
261
+ # Return the first prediction
262
+ return f"Predicted champion: {decoded_preds[0]}"
263
+
264
+ except Exception as e:
265
+ import traceback
266
+ print(f"Full error trace:\n{traceback.format_exc()}")
267
+ return f"Error making prediction: {e}"
268
+
269
+ def predict_champion_NOT_IN_USE(player_opgg_url, *champions):
270
+ """Make prediction based on selected champions"""
271
 
272
  print("============= Inside predict_champion()=================\n")
273