Spaces:
Sleeping
Sleeping
Jimin Park
commited on
Commit
·
5ca7f7e
1
Parent(s):
a372432
kermitting soon
Browse files- util/app.py +2 -2
- util/helper.py +10 -7
util/app.py
CHANGED
@@ -60,7 +60,7 @@ champion_encoder.fit(CHAMPIONS)
|
|
60 |
def get_user_training_df(player_opgg_url):
|
61 |
try:
|
62 |
print("========= Inside get_user_training_df(player_opgg_url) ============= \n")
|
63 |
-
print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n")
|
64 |
|
65 |
# Add input validation
|
66 |
if not player_opgg_url or not isinstance(player_opgg_url, str):
|
@@ -133,7 +133,7 @@ def predict_champion(player_opgg_url, *champions):
|
|
133 |
return training_df
|
134 |
|
135 |
training_df = convert_df(training_df)
|
136 |
-
print("type(training_df): ", type(training_df), "\n")
|
137 |
print("check_datatypes(training_df) BEFORE feature eng. :", check_datatypes(training_df), "\n")
|
138 |
|
139 |
training_df = apply_feature_engineering(training_df)
|
|
|
60 |
def get_user_training_df(player_opgg_url):
|
61 |
try:
|
62 |
print("========= Inside get_user_training_df(player_opgg_url) ============= \n")
|
63 |
+
#print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n")
|
64 |
|
65 |
# Add input validation
|
66 |
if not player_opgg_url or not isinstance(player_opgg_url, str):
|
|
|
133 |
return training_df
|
134 |
|
135 |
training_df = convert_df(training_df)
|
136 |
+
#print("type(training_df): ", type(training_df), "\n")
|
137 |
print("check_datatypes(training_df) BEFORE feature eng. :", check_datatypes(training_df), "\n")
|
138 |
|
139 |
training_df = apply_feature_engineering(training_df)
|
util/helper.py
CHANGED
@@ -951,15 +951,15 @@ def calculate_champion_loyalty(df):
|
|
951 |
|
952 |
season_games = [int(x) if isinstance(x, str) and x.isdigit() else 0 for x in season_games]
|
953 |
|
954 |
-
print(f"recent_games was: {recent_games}, types: {[type(x) for x in recent_games]}")
|
955 |
-
print(f"season_games was: {season_games}, types: {[type(x) for x in season_games]}")
|
956 |
|
957 |
-
print("\nSumming recent games... \n")
|
958 |
total_recent_games = sum(recent_games)
|
959 |
-
print("total_recent_games: ", total_recent_games, "\n")
|
960 |
total_season_games = sum(season_games)
|
961 |
-
print("total_season_games: ", total_season_games, "\n")
|
962 |
-
print("End of summing recent games... \n Total recent_games = ", total_recent_games, "\n total_season_games: ", total_season_games, "\n \n \n")
|
963 |
|
964 |
if total_recent_games == 0:
|
965 |
return {
|
@@ -993,11 +993,14 @@ def calculate_champion_loyalty(df):
|
|
993 |
confidence_score += 0.2 if pd.notna(row['most_champ_2']) else 0 # Increased weight for second
|
994 |
confidence_score += sum(0.1 for i in range(1, 4) if pd.notna(row[f'season_champ_{i}']))
|
995 |
confidence_score += sum(0.05 for i in range(4, 8) if pd.notna(row[f'season_champ_{i}']))
|
996 |
-
|
|
|
997 |
recent_games = sum((row[f'W_{i}'] + row[f'L_{i}']) if pd.notna(row[f'most_champ_{i}']) else 0
|
998 |
for i in range(1, 3)) # Only top 2
|
999 |
confidence_score += min(0.1, recent_games / 100)
|
1000 |
|
|
|
|
|
1001 |
return {
|
1002 |
'loyalty_score': round(min(loyalty_score, 1.0), 3),
|
1003 |
'confidence_score': round(min(confidence_score, 1.0), 3),
|
|
|
951 |
|
952 |
season_games = [int(x) if isinstance(x, str) and x.isdigit() else 0 for x in season_games]
|
953 |
|
954 |
+
#print(f"recent_games was: {recent_games}, types: {[type(x) for x in recent_games]}")
|
955 |
+
#print(f"season_games was: {season_games}, types: {[type(x) for x in season_games]}")
|
956 |
|
957 |
+
#print("\nSumming recent games... \n")
|
958 |
total_recent_games = sum(recent_games)
|
959 |
+
#print("total_recent_games: ", total_recent_games, "\n")
|
960 |
total_season_games = sum(season_games)
|
961 |
+
#print("total_season_games: ", total_season_games, "\n")
|
962 |
+
#print("End of summing recent games... \n Total recent_games = ", total_recent_games, "\n total_season_games: ", total_season_games, "\n \n \n")
|
963 |
|
964 |
if total_recent_games == 0:
|
965 |
return {
|
|
|
993 |
confidence_score += 0.2 if pd.notna(row['most_champ_2']) else 0 # Increased weight for second
|
994 |
confidence_score += sum(0.1 for i in range(1, 4) if pd.notna(row[f'season_champ_{i}']))
|
995 |
confidence_score += sum(0.05 for i in range(4, 8) if pd.notna(row[f'season_champ_{i}']))
|
996 |
+
print("...END calculate confidence score\n")
|
997 |
+
|
998 |
recent_games = sum((row[f'W_{i}'] + row[f'L_{i}']) if pd.notna(row[f'most_champ_{i}']) else 0
|
999 |
for i in range(1, 3)) # Only top 2
|
1000 |
confidence_score += min(0.1, recent_games / 100)
|
1001 |
|
1002 |
+
print(f"loyalty_score, confidence score: [{loyalty_score}], [{confidence_score}] \n")
|
1003 |
+
print("===================== exiting: get_loyalty_scores()===================")
|
1004 |
return {
|
1005 |
'loyalty_score': round(min(loyalty_score, 1.0), 3),
|
1006 |
'confidence_score': round(min(confidence_score, 1.0), 3),
|