Spaces:
Sleeping
Sleeping
Jimin Park
commited on
Commit
·
5e39132
1
Parent(s):
284ad13
kermitting soon
Browse files- util/app.py +26 -13
- util/app_working_backup.py +343 -0
util/app.py
CHANGED
@@ -32,28 +32,41 @@ CHAMPIONS = [
|
|
32 |
"Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
|
33 |
]
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Load model
|
36 |
try:
|
37 |
model_path = hf_hub_download(
|
38 |
repo_id="ivwhy/champion-predictor-model",
|
39 |
filename="champion_predictor.json"
|
40 |
)
|
41 |
-
|
42 |
-
model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
except Exception as e:
|
44 |
print(f"Error loading model: {e}")
|
45 |
model = None
|
46 |
|
47 |
-
try:
|
48 |
-
label_encoder = joblib.load('util/label_encoder.joblib')
|
49 |
-
print("Label encoder loaded successfully")
|
50 |
-
except Exception as e:
|
51 |
-
print(f"Error loading label encoder: {e}")
|
52 |
-
label_encoder = None
|
53 |
-
|
54 |
# Initialize champion name encoder
|
55 |
-
champion_encoder = LabelEncoder()
|
56 |
-
champion_encoder.fit(CHAMPIONS)
|
57 |
|
58 |
|
59 |
#==================================== Functions =================================================
|
@@ -169,7 +182,7 @@ def predict_champion(player_opgg_url, *champions):
|
|
169 |
# Map numeric ID to index in CHAMPIONS list
|
170 |
# Since your label encoder seems to use champion IDs, we need to map these to list indices
|
171 |
try:
|
172 |
-
# Get the first prediction
|
173 |
champion_id = int(decoded_numeric[0])
|
174 |
|
175 |
# Print debug information
|
@@ -334,7 +347,7 @@ with gr.Blocks() as demo:
|
|
334 |
)
|
335 |
|
336 |
# Optional: Save the champion encoder for future use
|
337 |
-
joblib.dump(champion_encoder, 'champion_encoder.joblib')
|
338 |
# Enable queuing
|
339 |
demo.launch(debug=True)
|
340 |
|
|
|
32 |
"Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
|
33 |
]
|
34 |
|
35 |
+
try:
|
36 |
+
label_encoder = joblib.load('util/label_encoder.joblib')
|
37 |
+
n_classes = len(label_encoder.classes_)
|
38 |
+
print("Label encoder loaded successfully")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"Error loading label encoder: {e}")
|
41 |
+
label_encoder = None
|
42 |
+
|
43 |
# Load model
|
44 |
try:
|
45 |
model_path = hf_hub_download(
|
46 |
repo_id="ivwhy/champion-predictor-model",
|
47 |
filename="champion_predictor.json"
|
48 |
)
|
49 |
+
|
50 |
+
# Initialize the model with proper parameters
|
51 |
+
model = xgb.XGBClassifier(
|
52 |
+
use_label_encoder=False,
|
53 |
+
objective='multi:softprob',
|
54 |
+
num_class=n_classes
|
55 |
+
)
|
56 |
+
|
57 |
+
# Load the model
|
58 |
+
model._Booster = xgb.Booster()
|
59 |
+
model._Booster.load_model(model_path)
|
60 |
+
|
61 |
+
# Set only n_classes_
|
62 |
+
model.n_classes_ = n_classes
|
63 |
except Exception as e:
|
64 |
print(f"Error loading model: {e}")
|
65 |
model = None
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Initialize champion name encoder
|
68 |
+
# champion_encoder = LabelEncoder()
|
69 |
+
# champion_encoder.fit(CHAMPIONS)
|
70 |
|
71 |
|
72 |
#==================================== Functions =================================================
|
|
|
182 |
# Map numeric ID to index in CHAMPIONS list
|
183 |
# Since your label encoder seems to use champion IDs, we need to map these to list indices
|
184 |
try:
|
185 |
+
# Get the first 3 prediction
|
186 |
champion_id = int(decoded_numeric[0])
|
187 |
|
188 |
# Print debug information
|
|
|
347 |
)
|
348 |
|
349 |
# Optional: Save the champion encoder for future use
|
350 |
+
#joblib.dump(champion_encoder, 'champion_encoder.joblib')
|
351 |
# Enable queuing
|
352 |
demo.launch(debug=True)
|
353 |
|
util/app_working_backup.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
import xgboost as xgb
|
4 |
+
from xgboost import DMatrix
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from app_training_df_getter import create_app_user_training_df
|
7 |
+
import pandas as pd
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.preprocessing import LabelEncoder
|
10 |
+
from helper import *
|
11 |
+
import joblib
|
12 |
+
|
13 |
+
|
14 |
+
# Define champion list for dropdowns
|
15 |
+
CHAMPIONS = [
|
16 |
+
"Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe",
|
17 |
+
"Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille",
|
18 |
+
"Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise",
|
19 |
+
"Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar",
|
20 |
+
"Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna",
|
21 |
+
"Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin",
|
22 |
+
"Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc",
|
23 |
+
"Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai",
|
24 |
+
"Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus",
|
25 |
+
"Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon",
|
26 |
+
"Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton",
|
27 |
+
"Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco",
|
28 |
+
"Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas",
|
29 |
+
"Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle",
|
30 |
+
"Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz",
|
31 |
+
"Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath",
|
32 |
+
"Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
|
33 |
+
]
|
34 |
+
|
35 |
+
# Load model
|
36 |
+
try:
|
37 |
+
model_path = hf_hub_download(
|
38 |
+
repo_id="ivwhy/champion-predictor-model",
|
39 |
+
filename="champion_predictor.json"
|
40 |
+
)
|
41 |
+
model = xgb.Booster()
|
42 |
+
model.load_model(model_path)
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error loading model: {e}")
|
45 |
+
model = None
|
46 |
+
|
47 |
+
try:
|
48 |
+
label_encoder = joblib.load('util/label_encoder.joblib')
|
49 |
+
print("Label encoder loaded successfully")
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading label encoder: {e}")
|
52 |
+
label_encoder = None
|
53 |
+
|
54 |
+
# Initialize champion name encoder
|
55 |
+
champion_encoder = LabelEncoder()
|
56 |
+
champion_encoder.fit(CHAMPIONS)
|
57 |
+
|
58 |
+
|
59 |
+
#==================================== Functions =================================================
|
60 |
+
def get_user_training_df(player_opgg_url):
|
61 |
+
try:
|
62 |
+
print("========= Inside get_user_training_df(player_opgg_url) ============= \n")
|
63 |
+
#print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n")
|
64 |
+
|
65 |
+
# Add input validation
|
66 |
+
if not player_opgg_url or not isinstance(player_opgg_url, str):
|
67 |
+
return "Invalid URL provided"
|
68 |
+
|
69 |
+
training_df = create_app_user_training_df(player_opgg_url)
|
70 |
+
return training_df
|
71 |
+
except Exception as e:
|
72 |
+
|
73 |
+
# Add more detailed error information
|
74 |
+
import traceback
|
75 |
+
error_trace = traceback.format_exc()
|
76 |
+
print(f"Full error trace:\n{error_trace}")
|
77 |
+
return f"Error getting training data: {str(e)}"
|
78 |
+
|
79 |
+
#return f"Error getting training data: {e}"
|
80 |
+
|
81 |
+
def show_stats(player_opgg_url):
|
82 |
+
"""Display player statistics and recent matches"""
|
83 |
+
if not player_opgg_url:
|
84 |
+
return "Please enter a player link to OPGG", None
|
85 |
+
|
86 |
+
try:
|
87 |
+
training_features = get_user_training_df(player_opgg_url)
|
88 |
+
|
89 |
+
print("training_features: ", training_features, "\n")
|
90 |
+
|
91 |
+
if isinstance(training_features, str): # Error message
|
92 |
+
return training_features, None
|
93 |
+
|
94 |
+
wins = training_features['result'].sum()
|
95 |
+
losses = len(training_features) - wins
|
96 |
+
winrate = f"{(wins / len(training_features)) * 100:.0f}%"
|
97 |
+
favorite_champions = (
|
98 |
+
training_features['champion']
|
99 |
+
.value_counts()
|
100 |
+
.head(3)
|
101 |
+
.index.tolist()
|
102 |
+
)
|
103 |
+
|
104 |
+
stats_html = f"""
|
105 |
+
<div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'>
|
106 |
+
<h3>Player's Recent Stats</h3>
|
107 |
+
<p>Wins: {wins} | Losses: {losses}</p>
|
108 |
+
<p>Winrate: {winrate}</p>
|
109 |
+
<p>Favorite Champions: {', '.join(favorite_champions)}</p>
|
110 |
+
</div>
|
111 |
+
"""
|
112 |
+
|
113 |
+
return stats_html, None
|
114 |
+
except Exception as e:
|
115 |
+
return f"Error processing stats: {e}. ", None
|
116 |
+
|
117 |
+
def predict_champion(player_opgg_url, *champions):
|
118 |
+
"""Make prediction based on selected champions"""
|
119 |
+
if not player_opgg_url or None in champions:
|
120 |
+
return "Please fill in all fields"
|
121 |
+
|
122 |
+
try:
|
123 |
+
if model is None:
|
124 |
+
return "Model not loaded properly"
|
125 |
+
|
126 |
+
if label_encoder is None:
|
127 |
+
return "Label encoder not loaded properly"
|
128 |
+
|
129 |
+
# Get and process the data
|
130 |
+
training_df = get_user_training_df(player_opgg_url)
|
131 |
+
|
132 |
+
if isinstance(training_df, str):
|
133 |
+
return training_df
|
134 |
+
|
135 |
+
training_df = convert_df(training_df)
|
136 |
+
#print("type(training_df): ", type(training_df), "\n")
|
137 |
+
print("check_datatypes(training_df) BEFORE feature eng: \n", check_datatypes(training_df), "\n")
|
138 |
+
|
139 |
+
training_df = apply_feature_engineering(training_df)
|
140 |
+
print("check_datatypes(training_df) AFTER feature eng: \n", check_datatypes(training_df), "\n")
|
141 |
+
|
142 |
+
# Get feature columns
|
143 |
+
feature_columns = [col for col in training_df.columns
|
144 |
+
if col not in ['champion', 'region', 'stratify_label']]
|
145 |
+
X = training_df[feature_columns]
|
146 |
+
|
147 |
+
# Handle categorical features
|
148 |
+
categorical_columns = X.select_dtypes(include=['category']).columns
|
149 |
+
X_processed = X.copy()
|
150 |
+
|
151 |
+
for col in categorical_columns:
|
152 |
+
X_processed[col] = X_processed[col].cat.codes
|
153 |
+
|
154 |
+
X_processed = X_processed.astype('float32')
|
155 |
+
|
156 |
+
# Create DMatrix and predict
|
157 |
+
dtest = DMatrix(X_processed, enable_categorical=True)
|
158 |
+
predictions = model.predict(dtest)
|
159 |
+
|
160 |
+
# Get prediction indices
|
161 |
+
if len(predictions.shape) > 1:
|
162 |
+
pred_indices = predictions.argmax(axis=1)
|
163 |
+
else:
|
164 |
+
pred_indices = predictions.astype(int)
|
165 |
+
|
166 |
+
# First get the numeric ID from the original label encoder
|
167 |
+
decoded_numeric = label_encoder.inverse_transform(pred_indices)
|
168 |
+
|
169 |
+
# Map numeric ID to index in CHAMPIONS list
|
170 |
+
# Since your label encoder seems to use champion IDs, we need to map these to list indices
|
171 |
+
try:
|
172 |
+
# Get the first prediction
|
173 |
+
champion_id = int(decoded_numeric[0])
|
174 |
+
|
175 |
+
# Print debug information
|
176 |
+
print(f"Champion ID from model: {champion_id}")
|
177 |
+
|
178 |
+
# Find the closest matching index
|
179 |
+
# Note: This assumes champion IDs roughly correspond to their position in the list
|
180 |
+
champion_index = min(max(champion_id - 1, 0), len(CHAMPIONS) - 1)
|
181 |
+
predicted_champion = CHAMPIONS[champion_index]
|
182 |
+
|
183 |
+
print(f"Mapped to champion: {predicted_champion}")
|
184 |
+
|
185 |
+
return f"{predicted_champion}"
|
186 |
+
|
187 |
+
except Exception as e:
|
188 |
+
print(f"Error mapping champion ID: {e}")
|
189 |
+
return f"Error: Could not map champion ID {decoded_numeric[0]}"
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
import traceback
|
193 |
+
print(f"Full error trace:\n{traceback.format_exc()}")
|
194 |
+
return f"Error making prediction: {e}"
|
195 |
+
|
196 |
+
''' current working function!!!!!!
|
197 |
+
def predict_champion(player_opgg_url, *champions):
|
198 |
+
"""Make prediction based on selected champions"""
|
199 |
+
|
200 |
+
print("==================== Inside: predict_champion() ===================== \n")
|
201 |
+
if not player_opgg_url or None in champions:
|
202 |
+
return "Please fill in all fields"
|
203 |
+
|
204 |
+
try:
|
205 |
+
if model is None:
|
206 |
+
return "Model not loaded properly"
|
207 |
+
|
208 |
+
if label_encoder is None:
|
209 |
+
return "Label encoder not loaded properly"
|
210 |
+
|
211 |
+
# Print label encoder information
|
212 |
+
print("\nLabel Encoder Information:")
|
213 |
+
print("Classes in encoder:", label_encoder.classes_)
|
214 |
+
print("Number of classes:", len(label_encoder.classes_))
|
215 |
+
|
216 |
+
# Get and process the data
|
217 |
+
training_df = get_user_training_df(player_opgg_url)
|
218 |
+
print("training_df retrieved: ", training_df, "\n")
|
219 |
+
|
220 |
+
if isinstance(training_df, str): # Error message
|
221 |
+
return training_df
|
222 |
+
|
223 |
+
# Apply necessary transformations
|
224 |
+
training_df = convert_df(training_df)
|
225 |
+
training_df = apply_feature_engineering(training_df)
|
226 |
+
print("training_df converted and feature engineered: ", training_df, "\n")
|
227 |
+
|
228 |
+
# Get feature columns (excluding champion and region)
|
229 |
+
feature_columns = [col for col in training_df.columns
|
230 |
+
if col not in ['champion', 'region', 'stratify_label']]
|
231 |
+
X = training_df[feature_columns]
|
232 |
+
print("Got feature columns X: ", X, "\n")
|
233 |
+
|
234 |
+
# Handle categorical features
|
235 |
+
categorical_columns = X.select_dtypes(include=['category']).columns
|
236 |
+
X_processed = X.copy()
|
237 |
+
print("Handled categorical features, X_processed = ", X_processed, "\n")
|
238 |
+
|
239 |
+
# Convert categorical columns to numeric
|
240 |
+
for col in categorical_columns:
|
241 |
+
X_processed[col] = X_processed[col].cat.codes
|
242 |
+
print("Converted categorical columns to numeric: ", categorical_columns, "\n")
|
243 |
+
|
244 |
+
# Convert to float32
|
245 |
+
X_processed = X_processed.astype('float32')
|
246 |
+
print("Converted X_processed to float32: ", X_processed, "\n")
|
247 |
+
|
248 |
+
# Create DMatrix with categorical feature support
|
249 |
+
dtest = DMatrix(X_processed, enable_categorical=True)
|
250 |
+
print("Converted to Dmatrix: ", dtest, "\n")
|
251 |
+
|
252 |
+
# Make prediction
|
253 |
+
print("Starting model prediction...\n")
|
254 |
+
predictions = model.predict(dtest)
|
255 |
+
print("Model prediction complete\n")
|
256 |
+
|
257 |
+
print("\nPrediction Information:")
|
258 |
+
print("Raw predictions shape:", predictions.shape)
|
259 |
+
print("Raw predictions:", predictions)
|
260 |
+
|
261 |
+
# Get the highest probability prediction
|
262 |
+
if len(predictions.shape) > 1:
|
263 |
+
pred_indices = predictions.argmax(axis=1)
|
264 |
+
else:
|
265 |
+
pred_indices = predictions.astype(int)
|
266 |
+
|
267 |
+
print("\nPrediction Indices:")
|
268 |
+
print("Indices shape:", pred_indices.shape)
|
269 |
+
print("Indices:", pred_indices)
|
270 |
+
|
271 |
+
# Check if indices are within valid range
|
272 |
+
print("\nValidation:")
|
273 |
+
print("Min index:", pred_indices.min())
|
274 |
+
print("Max index:", pred_indices.max())
|
275 |
+
print("Valid index range:", 0, len(label_encoder.classes_) - 1)
|
276 |
+
# Try to decode predictions
|
277 |
+
|
278 |
+
try:
|
279 |
+
decoded_preds = label_encoder.inverse_transform(pred_indices)
|
280 |
+
print("\nDecoded Predictions:")
|
281 |
+
print("Type:", type(decoded_preds))
|
282 |
+
print("Value:", decoded_preds)
|
283 |
+
print("==================== Exiting: predict_champion()===================\n")
|
284 |
+
return f"Predicted champion: {decoded_preds[0]}"
|
285 |
+
except Exception as e:
|
286 |
+
print(f"\nError during decoding: {e}")
|
287 |
+
# Fallback: try to directly index into classes
|
288 |
+
try:
|
289 |
+
champion = label_encoder.classes_[int(pred_indices[0])]
|
290 |
+
return f"Predicted champion: {champion}"
|
291 |
+
except Exception as e2:
|
292 |
+
print(f"Fallback error: {e2}")
|
293 |
+
return f"Error decoding prediction: {pred_indices[0]}"
|
294 |
+
|
295 |
+
except Exception as e:
|
296 |
+
import traceback
|
297 |
+
print(f"Full error trace:\n{traceback.format_exc()}")
|
298 |
+
return f"Error making prediction: {e}"
|
299 |
+
'''
|
300 |
+
|
301 |
+
# Define your interface
|
302 |
+
with gr.Blocks() as demo:
|
303 |
+
gr.Markdown("# League of Legends Champion Prediction")
|
304 |
+
|
305 |
+
with gr.Row():
|
306 |
+
player_opgg_url = gr.Textbox(label="OPGG Player URL")
|
307 |
+
show_button = gr.Button("Show Player Stats")
|
308 |
+
|
309 |
+
with gr.Row():
|
310 |
+
stats_output = gr.HTML(label="Player Statistics")
|
311 |
+
recent_matches = gr.HTML(label="Recent Matches")
|
312 |
+
|
313 |
+
with gr.Row():
|
314 |
+
champion_dropdowns = [
|
315 |
+
gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}")
|
316 |
+
for i in range(9)
|
317 |
+
]
|
318 |
+
|
319 |
+
with gr.Row():
|
320 |
+
predict_button = gr.Button("Predict")
|
321 |
+
prediction_output = gr.Text(label="Prediction")
|
322 |
+
|
323 |
+
# Set up event handlers
|
324 |
+
show_button.click(
|
325 |
+
fn=show_stats,
|
326 |
+
inputs=[player_opgg_url],
|
327 |
+
outputs=[stats_output, recent_matches]
|
328 |
+
)
|
329 |
+
|
330 |
+
predict_button.click(
|
331 |
+
fn=predict_champion,
|
332 |
+
inputs=[player_opgg_url] + champion_dropdowns,
|
333 |
+
outputs=prediction_output
|
334 |
+
)
|
335 |
+
|
336 |
+
# Optional: Save the champion encoder for future use
|
337 |
+
joblib.dump(champion_encoder, 'champion_encoder.joblib')
|
338 |
+
# Enable queuing
|
339 |
+
demo.launch(debug=True)
|
340 |
+
|
341 |
+
# For local testing
|
342 |
+
if __name__ == "__main__":
|
343 |
+
demo.launch()
|