Spaces:
Sleeping
Sleeping
Jimin Park
commited on
Commit
·
cf0a632
1
Parent(s):
d3292b9
kermitting soon
Browse files- requirements.txt +1 -0
- util/app.py +22 -7
- util/label_encoder.joblib +3 -0
requirements.txt
CHANGED
@@ -7,3 +7,4 @@ numpy==1.26.0
|
|
7 |
scikit-learn==1.3.1
|
8 |
selenium==4.27.1
|
9 |
webdriver-manager== 4.0.2
|
|
|
|
7 |
scikit-learn==1.3.1
|
8 |
selenium==4.27.1
|
9 |
webdriver-manager== 4.0.2
|
10 |
+
joblib
|
util/app.py
CHANGED
@@ -8,6 +8,7 @@ import pandas as pd
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
from sklearn.preprocessing import LabelEncoder
|
10 |
from helper import *
|
|
|
11 |
|
12 |
|
13 |
# Define champion list for dropdowns
|
@@ -43,6 +44,13 @@ except Exception as e:
|
|
43 |
print(f"Error loading model: {e}")
|
44 |
model = None
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
# Functions
|
47 |
def get_user_training_df(player_opgg_url):
|
48 |
try:
|
@@ -82,7 +90,7 @@ def prepare_training_df(df, target_column='champion', stratify_columns=['champio
|
|
82 |
|
83 |
category_mappings = {}
|
84 |
temp_encoded_df = df.copy()
|
85 |
-
|
86 |
# Convert categorical columns to codes but keep original data
|
87 |
for col in categorical_columns:
|
88 |
if col in df.columns:
|
@@ -91,7 +99,7 @@ def prepare_training_df(df, target_column='champion', stratify_columns=['champio
|
|
91 |
'ordered': df[col].cat.ordered
|
92 |
}
|
93 |
temp_encoded_df[col] = df[col].cat.codes
|
94 |
-
|
95 |
# Remove combinations with too few samples
|
96 |
combo_counts = df['stratify_label'].value_counts()
|
97 |
valid_combos = combo_counts[combo_counts >= min_samples_per_class].index
|
@@ -138,6 +146,7 @@ def prepare_training_df(df, target_column='champion', stratify_columns=['champio
|
|
138 |
|
139 |
print("X_val: ", X_val, "\n X_val type: ", type(X_val), "\n y_val: ", y_val, "\n y_val type: ", type(y_val))
|
140 |
|
|
|
141 |
# Restore categorical dtypes
|
142 |
for col in categorical_columns:
|
143 |
if col in X_train.columns:
|
@@ -156,7 +165,7 @@ def prepare_training_df(df, target_column='champion', stratify_columns=['champio
|
|
156 |
categories=category_mappings[col]['categories'],
|
157 |
ordered=category_mappings[col]['ordered']
|
158 |
)
|
159 |
-
|
160 |
|
161 |
return X_train, X_val, X_test, y_train, y_val, y_test, label_encoder
|
162 |
|
@@ -207,6 +216,8 @@ def predict_champion(player_opgg_url, *champions):
|
|
207 |
try:
|
208 |
if model is None:
|
209 |
return "Model not loaded properly"
|
|
|
|
|
210 |
|
211 |
print("============= Inside predict_champion(): Model loaded properly=================\n")
|
212 |
|
@@ -226,8 +237,8 @@ def predict_champion(player_opgg_url, *champions):
|
|
226 |
target_column='champion',
|
227 |
stratify_columns=['champion', 'region'],
|
228 |
min_samples_per_class=5,
|
229 |
-
train_size=0
|
230 |
-
val_size=
|
231 |
random_state=42
|
232 |
)
|
233 |
print("type(X_test): ", type(X_test), "\n")
|
@@ -241,9 +252,13 @@ def predict_champion(player_opgg_url, *champions):
|
|
241 |
|
242 |
prediction = model.predict(X_test)
|
243 |
|
244 |
-
print("prediction", prediction , "\n")
|
|
|
|
|
|
|
|
|
245 |
|
246 |
-
return f"Predicted champion: {
|
247 |
except Exception as e:
|
248 |
return f"Error making prediction: {e}"
|
249 |
|
|
|
8 |
from sklearn.model_selection import train_test_split
|
9 |
from sklearn.preprocessing import LabelEncoder
|
10 |
from helper import *
|
11 |
+
import joblib
|
12 |
|
13 |
|
14 |
# Define champion list for dropdowns
|
|
|
44 |
print(f"Error loading model: {e}")
|
45 |
model = None
|
46 |
|
47 |
+
# Load the saved LabelEncoder
|
48 |
+
try:
|
49 |
+
label_encoder = joblib.load('label_encoder.joblib')
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Error loading label encoder: {e}")
|
52 |
+
label_encoder = None
|
53 |
+
|
54 |
# Functions
|
55 |
def get_user_training_df(player_opgg_url):
|
56 |
try:
|
|
|
90 |
|
91 |
category_mappings = {}
|
92 |
temp_encoded_df = df.copy()
|
93 |
+
'''
|
94 |
# Convert categorical columns to codes but keep original data
|
95 |
for col in categorical_columns:
|
96 |
if col in df.columns:
|
|
|
99 |
'ordered': df[col].cat.ordered
|
100 |
}
|
101 |
temp_encoded_df[col] = df[col].cat.codes
|
102 |
+
'''
|
103 |
# Remove combinations with too few samples
|
104 |
combo_counts = df['stratify_label'].value_counts()
|
105 |
valid_combos = combo_counts[combo_counts >= min_samples_per_class].index
|
|
|
146 |
|
147 |
print("X_val: ", X_val, "\n X_val type: ", type(X_val), "\n y_val: ", y_val, "\n y_val type: ", type(y_val))
|
148 |
|
149 |
+
'''
|
150 |
# Restore categorical dtypes
|
151 |
for col in categorical_columns:
|
152 |
if col in X_train.columns:
|
|
|
165 |
categories=category_mappings[col]['categories'],
|
166 |
ordered=category_mappings[col]['ordered']
|
167 |
)
|
168 |
+
'''
|
169 |
|
170 |
return X_train, X_val, X_test, y_train, y_val, y_test, label_encoder
|
171 |
|
|
|
216 |
try:
|
217 |
if model is None:
|
218 |
return "Model not loaded properly"
|
219 |
+
if label_encoder is None:
|
220 |
+
return "Label encoder not loaded properly"
|
221 |
|
222 |
print("============= Inside predict_champion(): Model loaded properly=================\n")
|
223 |
|
|
|
237 |
target_column='champion',
|
238 |
stratify_columns=['champion', 'region'],
|
239 |
min_samples_per_class=5,
|
240 |
+
train_size=0,
|
241 |
+
val_size=1,
|
242 |
random_state=42
|
243 |
)
|
244 |
print("type(X_test): ", type(X_test), "\n")
|
|
|
252 |
|
253 |
prediction = model.predict(X_test)
|
254 |
|
255 |
+
print("prediction: ", prediction , "\n")
|
256 |
+
|
257 |
+
# Decode predictions (if using LabelEncoder)
|
258 |
+
decoded_preds = label_encoder.inverse_transform(prediction)
|
259 |
+
print("decoded_preds: ", decoded_preds, "\n")
|
260 |
|
261 |
+
return f"Predicted champion: {decoded_preds}"
|
262 |
except Exception as e:
|
263 |
return f"Error making prediction: {e}"
|
264 |
|
util/label_encoder.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38ec04acda4d7987202f744bcc40b7d02d8374f55c17f5701840320e6b07ff29
|
3 |
+
size 1541
|