Jimin Park commited on
Commit
e8a5ec7
·
1 Parent(s): 7625b8c

kermitting soon

Browse files
Files changed (1) hide show
  1. util/app.py +27 -6
util/app.py CHANGED
@@ -67,7 +67,7 @@ def get_user_training_df(player_opgg_url):
67
  #return f"Error getting training data: {e}"
68
 
69
  def prepare_training_df(df, target_column='champion', stratify_columns=['champion', 'region'],
70
- min_samples_per_class=6, train_size=0, val_size=1, random_state=42):
71
  df = df.copy()
72
  original_dtypes = df.dtypes.to_dict()
73
 
@@ -234,19 +234,40 @@ def predict_champion(player_opgg_url, *champions):
234
  )
235
  print("type(X_test): ", type(X_test), "\n")
236
 
237
- # Convert Pandas DataFrame to DMatrix
238
- X_test = DMatrix(X_test)
 
 
 
 
 
 
 
 
 
 
 
239
 
240
  print("type(X_test) after converting to DMatrix: ", type(X_test), "\n")
241
 
242
  print("Starting model prediction... \n")
243
 
244
- prediction = model.predict(X_test)
 
 
 
 
 
 
 
 
245
 
246
- print("prediction: ", prediction , "\n")
 
 
247
 
248
  # Decode predictions (if using LabelEncoder)
249
- decoded_preds = label_encoder.inverse_transform(prediction)
250
  print("decoded_preds: ", decoded_preds, "\n")
251
 
252
  return f"Predicted champion: {decoded_preds}"
 
67
  #return f"Error getting training data: {e}"
68
 
69
  def prepare_training_df(df, target_column='champion', stratify_columns=['champion', 'region'],
70
+ min_samples_per_class=6, train_size=0.6, val_size=0.2, random_state=42):
71
  df = df.copy()
72
  original_dtypes = df.dtypes.to_dict()
73
 
 
234
  )
235
  print("type(X_test): ", type(X_test), "\n")
236
 
237
+ # Handle categorical features
238
+ categorical_columns = X_val.select_dtypes(include=['category']).columns
239
+ X_val_processed = X_val.copy()
240
+
241
+ # Convert categorical columns to numeric
242
+ for col in categorical_columns:
243
+ X_val_processed[col] = X_val_processed[col].cat.codes
244
+
245
+ # Convert to float32
246
+ X_val_processed = X_val_processed.astype('float32')
247
+
248
+ # Create DMatrix with categorical feature support from pandas dataframe.
249
+ dtest = DMatrix(X_val_processed, enable_categorical=True)
250
 
251
  print("type(X_test) after converting to DMatrix: ", type(X_test), "\n")
252
 
253
  print("Starting model prediction... \n")
254
 
255
+ predictions = model.predict(dtest)
256
+ print("Previous line: predictions = model.predict(dtest). \n prediction: ", predictions , "\n")
257
+
258
+ '''
259
+ # Get the highest probability prediction
260
+ if len(predictions.shape) > 1:
261
+ pred_indices = predictions.argmax(axis=1)
262
+ else:
263
+ pred_indices = predictions.astype(int)
264
 
265
+ # Decode predictions using loaded label encoder
266
+ decoded_preds = label_encoder.inverse_transform(pred_indices)
267
+ '''
268
 
269
  # Decode predictions (if using LabelEncoder)
270
+ decoded_preds = label_encoder.inverse_transform(predictions)
271
  print("decoded_preds: ", decoded_preds, "\n")
272
 
273
  return f"Predicted champion: {decoded_preds}"