import os import time from selenium import webdriver from selenium.webdriver.chrome.service import Service from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import pandas as pd from webdriver_manager.core.os_manager import ChromeType from helper import format_summoner_name # Constants BASE_URL = "https://www.op.gg/summoners/{region}/{username}?queue_type=SOLORANKED" MASTERY_URL = "https://www.op.gg/summoners/{region}/{username}/mastery" def setup_driver(): """Setup optimized Chrome WebDriver""" options = Options() options.add_argument("--headless") options.add_argument("--no-sandbox") options.add_argument("--disable-dev-shm-usage") options.add_argument("--disable-gpu") options.add_argument("--disable-logging") options.add_argument("--log-level=3") options.add_argument("--disable-extensions") options.page_load_strategy = 'eager' options.add_argument( "user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36" ) # Check if we're running in Hugging Face Spaces or locally if 'HF_SPACE' in os.environ: # Hugging Face Space is detected, handle accordingly (example for versioning) print("Running on Hugging Face Space.") chromedriver_path = ChromeDriverManager().install() else: # Local environment setup print("Running chrome webdriver.") chromedriver_path = ChromeDriverManager(chrome_type=ChromeType.CHROMIUM).install() # Create the Service object using the installed chromedriver service = Service(executable_path=chromedriver_path) # Return the configured WebDriver instance driver = webdriver.Chrome(service=service, options=options) return driver def wait_and_find_element(driver, selector, timeout=20, description="element"): """Utility function for waiting and finding elements""" try: element = WebDriverWait(driver, timeout).until( EC.presence_of_element_located((By.CSS_SELECTOR, selector)) ) return element except Exception as e: print(f"Error finding {description}: {e}") return None def get_recent_stats(stats_box): """Extract recent statistics from stats box""" try: stats = stats_box.find_element(By.CSS_SELECTOR, "div.stats") recent_stats = stats.text.strip().split("\n") # Parse the stats into a structured format games_info = recent_stats[0].split() # ['20G', '13W', '7L'] total_games = int(games_info[0].replace('G', '')) wins = int(games_info[1].replace('W', '')) losses = int(games_info[2].replace('L', '')) win_rate = float(recent_stats[1].replace('%', '')) / 100 kda_parts = recent_stats[2].split(' / ') # ['5.1', '4.0', '7.9'] kills = float(kda_parts[0]) deaths = float(kda_parts[1]) assists = float(kda_parts[2]) kda_ratio = float(recent_stats[3].replace(':1', '')) kill_participation = float(recent_stats[4].replace('P/Kill ', '').replace('%', '')) / 100 recent_stats = { "total_games": total_games, "wins": wins, "losses": losses, "win_rate": win_rate, "avg_kills": kills, "avg_deaths": deaths, "avg_assists": assists, "kda_ratio": kda_ratio, "kill_participation": kill_participation, } except Exception as e: print(f"Error extracting recent stats: {e}") return None return recent_stats def get_recent_champions(stats_box): champions = stats_box.find_element(By.CSS_SELECTOR, "div.champions") champion_elements = champions.find_elements(By.CSS_SELECTOR, "li") # Initialize flat dictionary with defaults recent_champ_stats = { "most_champ_1": None, "WR_1": 0.0, "W_1": 0, "L_1": 0, "KDA_1": 0.0, "most_champ_2": None, "WR_2": 0.0, "W_2": 0, "L_2": 0, "KDA_2": 0.0, "most_champ_3": None, "WR_3": 0.0, "W_3": 0, "L_3": 0, "KDA_3": 0.0 } for i, champion in enumerate(champion_elements, 1): try: # Initialize kda for this iteration kda = 0.0 # Extract champion name and image source champ_name = champion.find_element(By.TAG_NAME, "img").get_attribute("alt") # Extract win/lose stats and KDA win_lose = champion.find_element(By.CSS_SELECTOR, ".win-lose").text.strip() win_rate = float(win_lose.split('%')[0]) / 100 # "75%" -> 0.75 wins = int(win_lose.split('(')[1].split('W')[0]) # "(3W 1L)" -> 3 losses = int(win_lose.split('W')[1].split('L')[0]) # "1L)" -> 1 # KDA processing with a more precise selector try: kda_element = champion.find_element(By.CSS_SELECTOR, "div[class*='e1t9nk8i2']") if kda_element: kda_text = kda_element.text.strip() #print(f"Found KDA text for champion {i}: '{kda_text}'") # Debug print if kda_text and "KDA" in kda_text: kda = float(kda_text.split("KDA")[0].strip()) #print(f"Parsed KDA value: {kda}") # Debug print else: print(f"Invalid KDA text format for champion {i}: '{kda_text}'") else: print(f"No KDA element found for champion {i}") except Exception as e: print(f"Error processing KDA: {e}") kda = 0.0 # Update flat dictionary recent_champ_stats[f"most_champ_{i}"] = champ_name recent_champ_stats[f"WR_{i}"] = win_rate recent_champ_stats[f"W_{i}"] = wins recent_champ_stats[f"L_{i}"] = losses recent_champ_stats[f"KDA_{i}"] = kda except Exception as e: print(f"Error processing champion {i}: {e}") # Dictionary already has default values for this champion continue return recent_champ_stats def get_preferred_role(stats_box): # Role priority (higher index = higher priority when tied) role_priority = { 'SUPPORT': 0, 'ADC': 1, 'TOP': 2, 'JUNGLE': 3, 'MID': 4 } # Find the positions section positions = stats_box.find_element(By.CSS_SELECTOR, "div.positions") role_elements = positions.find_elements(By.CSS_SELECTOR, "li") preferred_roles = { 'TOP': 0.0, 'JUNGLE': 0.0, 'MID': 0.0, 'ADC': 0.0, 'SUPPORT': 0.0, 'most_role_1': None, 'most_role_2': None, 'most_role_1_value': 0.0, 'most_role_2_value': 0.0 } # First, collect all role percentages for role in role_elements: role_name = role.find_element(By.CSS_SELECTOR, "div.position img").get_attribute("alt") percentage = role.find_element(By.CSS_SELECTOR, "div.gauge").get_attribute("style") if percentage: percentage_value = percentage.split(":")[1].strip().replace("%", "").strip(';') try: preferred_roles[role_name] = int(percentage_value)/100 except ValueError: preferred_roles[role_name] = 0 # Sort roles by percentage first, then by priority when tied sorted_roles = sorted( [(role, value) for role, value in preferred_roles.items() if role in role_priority], key=lambda x: (x[1], role_priority[x[0]]), # Sort by percentage first, then role priority reverse=True ) # Add top 2 roles if they exist if len(sorted_roles) > 0: preferred_roles['most_role_1'] = sorted_roles[0][0] preferred_roles['most_role_1_value'] = sorted_roles[0][1] if len(sorted_roles) > 1: preferred_roles['most_role_2'] = sorted_roles[1][0] preferred_roles['most_role_2_value'] = sorted_roles[1][1] return preferred_roles def get_weekly_stats(ranked_7d_box): # Find the list of champions in the ranked 7d box champion_elements = ranked_7d_box.find_elements(By.CSS_SELECTOR, "ul li")[:3] # Initialize flat dictionary with defaults for 3 champions weekly_stats = { "7d_champ_1": None, "7d_total_1": 0, "7d_W_1": 0, "7d_L_1": 0, "7d_WR_1": 0.0, "7d_champ_2": None, "7d_total_2": 0, "7d_W_2": 0, "7d_L_2": 0, "7d_WR_2": 0.0, "7d_champ_3": None, "7d_total_3": 0, "7d_W_3": 0, "7d_L_3": 0, "7d_WR_3": 0.0 } # Find the list of champions and take first 3 for i, champion in enumerate(champion_elements, 1): try: # Extract champion name champ_name = champion.find_element(By.CSS_SELECTOR, "div.info > div.name > a").text.strip() # Extract wins and losses try: win_text = champion.find_element(By.XPATH, ".//div[@class='graph']//div[@class='text left']").text.strip() loss_text = champion.find_element(By.XPATH, ".//div[@class='graph']//div[@class='text right']").text.strip() wins = int(win_text.replace('W', '').strip()) if 'W' in win_text else 0 losses = int(loss_text.replace('L', '').strip()) if 'L' in loss_text else 0 except Exception: wins = 0 losses = 0 # Calculate total games total_games = wins + losses # Extract win rate try: win_rate_text = champion.find_element(By.CSS_SELECTOR, "div.winratio").text.strip() win_rate = float(win_rate_text.replace('%', '').strip()) / 100 if win_rate_text else 0 except Exception: win_rate = 0 # Update flat dictionary with dynamic numbering weekly_stats[f"7d_champ_{i}"] = champ_name weekly_stats[f"7d_total_{i}"] = total_games weekly_stats[f"7d_W_{i}"] = wins weekly_stats[f"7d_L_{i}"] = losses weekly_stats[f"7d_WR_{i}"] = win_rate except Exception as e: print(f"Error processing champion {i} in 7d stats: {e}") # Add default values for error cases weekly_stats[f"7d_champ_{i}"] = None weekly_stats[f"7d_total_{i}"] = 0 weekly_stats[f"7d_W_{i}"] = 0 weekly_stats[f"7d_L_{i}"] = 0 weekly_stats[f"7d_WR_{i}"] = 0.0 return weekly_stats def get_season_data(season_champ_box): # Initialize flat dictionary with defaults for 7 champions season_data = { "season_champ_1": None, "cs_ssn_1": "0", "cpm_ssn_1": "0", "kda_ssn_1": "0", "k_ssn_1": "0", "d_ssn_1": "0", "a_ssn_1": "0", "wr_ssn_1": 0.0, "games_ssn_1": "0", "season_champ_2": None, "cs_ssn_2": "0", "cpm_ssn_2": "0", "kda_ssn_2": "0", "k_ssn_2": "0", "d_ssn_2": "0", "a_ssn_2": "0", "wr_ssn_2": 0.0, "games_ssn_2": "0", "season_champ_3": None, "cs_ssn_3": "0", "cpm_ssn_3": "0", "kda_ssn_3": "0", "k_ssn_3": "0", "d_ssn_3": "0", "a_ssn_3": "0", "wr_ssn_3": 0.0, "games_ssn_3": "0", "season_champ_4": None, "cs_ssn_4": "0", "cpm_ssn_4": "0", "kda_ssn_4": "0", "k_ssn_4": "0", "d_ssn_4": "0", "a_ssn_4": "0", "wr_ssn_4": 0.0, "games_ssn_4": "0", "season_champ_5": None, "cs_ssn_5": "0", "cpm_ssn_5": "0", "kda_ssn_5": "0", "k_ssn_5": "0", "d_ssn_5": "0", "a_ssn_5": "0", "wr_ssn_5": 0.0, "games_ssn_5": "0", "season_champ_6": None, "cs_ssn_6": "0", "cpm_ssn_6": "0", "kda_ssn_6": "0", "k_ssn_6": "0", "d_ssn_6": "0", "a_ssn_6": "0", "wr_ssn_6": 0.0, "games_ssn_6": "0", "season_champ_7": None, "cs_ssn_7": "0", "cpm_ssn_7": "0", "kda_ssn_7": "0", "k_ssn_7": "0", "d_ssn_7": "0", "a_ssn_7": "0", "wr_ssn_7": 0.0, "games_ssn_7": "0" } try: # Find all champion boxes directly champion_boxes = season_champ_box.find_elements(By.CSS_SELECTOR, "div.champion-box") for i, box in enumerate(champion_boxes[:7], 1): try: # Extract champion name champ_name = box.find_element(By.CSS_SELECTOR, "div.name a").text.strip() # Extract CS stats and CPM cs_text = box.find_element(By.CSS_SELECTOR, "div.cs").text.strip() cs_parts = cs_text.split() cs_stats = cs_parts[1] if len(cs_parts) > 1 else "0" # Extract CPM from parentheses cpm = cs_parts[2].strip('()') if len(cs_parts) > 2 else "0" # Extract KDA ratio kda_element = box.find_element(By.CSS_SELECTOR, "div.kda div[class^='css-']") kda_text = kda_element.text.strip() kda_ratio = kda_text.replace(" KDA", "").replace(":1", "").strip() # Extract K/D/A averages kda_detail = box.find_element(By.CSS_SELECTOR, "div.kda div.detail").text.strip() k, d, a = map(str.strip, kda_detail.split('/')) # Extract win rate win_rate_element = box.find_element(By.CSS_SELECTOR, "div.played div[class^='css-']") win_rate_text = win_rate_element.text.strip() win_rate = float(win_rate_text.replace('%', '')) / 100 # Extract games played games_text = box.find_element(By.CSS_SELECTOR, "div.played div.count").text.strip() games_played = games_text.replace(" Played", "") # Update flat dictionary season_data[f"season_champ_{i}"] = champ_name season_data[f"cs_ssn_{i}"] = cs_stats season_data[f"cpm_ssn_{i}"] = cpm season_data[f"kda_ssn_{i}"] = kda_ratio season_data[f"k_ssn_{i}"] = k season_data[f"d_ssn_{i}"] = d season_data[f"a_ssn_{i}"] = a season_data[f"wr_ssn_{i}"] = win_rate season_data[f"games_ssn_{i}"] = games_played except Exception as e: print(f"Error processing champion {i}: {str(e)}") print(f"Error type: {type(e).__name__}") except Exception as e: print(f"Error in get_season_data main block: {str(e)}") print(f"Error type: {type(e).__name__}") return season_data def get_mastery_data(driver): # Initialize dictionary with metadata mastery_data = { } try: # Wait for container to load WebDriverWait(driver, 20).until( EC.presence_of_element_located((By.CSS_SELECTOR, "div.css-zefc5s.e1poynyt0")) ) # Get all champion boxes (limiting to first 16) champion_boxes = driver.find_elements(By.CSS_SELECTOR, "div.css-8fea4f.e1poynyt1")[:16] # Process each champion for i, champion in enumerate(champion_boxes, 1): try: name = champion.find_element(By.CSS_SELECTOR, "strong.champion-name").text.strip() level = champion.find_element(By.CSS_SELECTOR, "div.champion-level__text > span").text.strip() #points = champion.find_element(By.CSS_SELECTOR, "div.champion-point > span").text.strip() mastery_data[f"mastery_champ_{i}"] = name mastery_data[f"m_lv_{i}"] = level #mastery_data[f"m_points_{i}"] = points.replace(",", "") except Exception as e: print(f"Error processing champion {i}: {e}") mastery_data[f"mastery_champ_{i}"] = None mastery_data[f"m_lv_{i}"] = "0" #mastery_data[f"m_points_{i}"] = "0" except Exception as e: print(f"Error scraping mastery data: {e}") return mastery_data def get_player_stats(region, username): """Main function to get player statistics""" driver = None try: driver = setup_driver() # Format URLs profile_url = BASE_URL.format(region=region, username=username) mastery_url = MASTERY_URL.format(region=region, username=username) # Get main profile data driver.get(profile_url) # Find main containers main_container = wait_and_find_element(driver, "#content-container") if not main_container: raise Exception("Could not find main container") stats_box = wait_and_find_element( driver, "div.stats-box.stats-box--SOLORANKED" ) season_champ_box = wait_and_find_element( driver, "div:nth-child(1) > div.css-18w3o0f.ere6j7v0" ) ranked_7d_box = wait_and_find_element( driver, "div[class*='efsztyx0']" ) # Extract all stats player_data = { 'recent_stats': get_recent_stats(stats_box) if stats_box else None, 'recent_champions': get_recent_champions(stats_box) if stats_box else None, 'preferred_roles': get_preferred_role(stats_box) if stats_box else None, 'season_data': get_season_data(season_champ_box) if season_champ_box else None, 'weekly_stats': get_weekly_stats(ranked_7d_box) if ranked_7d_box else None, } # Get mastery data driver.get(mastery_url) mastery_data = get_mastery_data(driver) player_data['mastery_data'] = mastery_data # Create DataFrames dfs = {} for key, data in player_data.items(): if data: dfs[key] = pd.DataFrame([data]) # Add player ID and region to each DataFrame for df in dfs.values(): df.insert(0, 'player_id', username) # Insert player_id as first column df.insert(1, 'region', region) # Insert region as second column # Merge all DataFrames into one merged_df = None for name, df in dfs.items(): if merged_df is None: merged_df = df else: # Drop common columns except player_id and region common_cols = df.columns.intersection(merged_df.columns) cols_to_drop = [col for col in common_cols if col not in ['player_id', 'region']] df_to_merge = df.drop(columns=cols_to_drop, errors='ignore') merged_df = pd.merge(merged_df, df_to_merge, on=['player_id', 'region'], how='outer') # Ensure player_id and region are the first columns in final order if merged_df is not None and not merged_df.empty: # Get all columns except player_id and region other_cols = [col for col in merged_df.columns if col not in ['player_id', 'region']] # Reorder columns with player_id and region first merged_df = merged_df[['player_id', 'region'] + other_cols] # # Save merged DataFrame # save_dir = "util/data" # os.makedirs(save_dir, exist_ok=True) # if merged_df is not None and not merged_df.empty: # filepath = os.path.join(save_dir, f"player_stats.csv") # merged_df.to_csv(filepath, index=False) # print(f"Saved player stats to {filepath}") return merged_df, dfs except Exception as e: print(f"Error in get_player_stats: {e}") return None, {} finally: if driver: driver.quit() def get_multiple_player_stats(players_df): """ Get stats for multiple players from a DataFrame Parameters: players_df: DataFrame with columns 'region' and 'username' """ all_merged_dfs = [] error_players = [] save_dir = "util/data" os.makedirs(save_dir, exist_ok=True) checkpoint_file = os.path.join(save_dir, "player_stats_checkpoint.csv") all_merged_dfs = [] error_players = [] # Load checkpoint if exists start_idx = 0 if os.path.exists(checkpoint_file): try: checkpoint_df = pd.read_csv(checkpoint_file) all_merged_dfs = [checkpoint_df] # Get the number of players already processed processed_players = set(checkpoint_df['player_id']) # Filter out already processed players players_df = players_df[~players_df['username'].isin(processed_players)] print(f"Loaded checkpoint with {len(processed_players)} players already processed") except Exception as e: print(f"Error loading checkpoint: {e}") print(f"Processing {len(players_df)} remaining players...") for idx, row in players_df.iterrows(): region = row['region'].lower() # Ensure region is lowercase username = row['username'] try: # Format the username formatted_username = format_summoner_name(username) print(f"\nProcessing player {idx + 1}/{len(players_df)}: {username} ({region})") print(f"Formatted username: {formatted_username}") # Add delay between requests if idx > 0: time.sleep(2) merged_df, _ = get_player_stats(region, formatted_username) if merged_df is not None and not merged_df.empty: # Store original username in the DataFrame merged_df['player_id'] = username # Store original username all_merged_dfs.append(merged_df) print(f"Successfully processed {username}") # Save checkpoint every 10 players if len(all_merged_dfs) % 10 == 0: checkpoint_save = pd.concat(all_merged_dfs, ignore_index=True) checkpoint_save.to_csv(checkpoint_file, index=False) print(f"Saved checkpoint after processing {len(all_merged_dfs)} players") else: print(f"No data found for {username}") error_players.append({ 'region': region, 'username': username, 'formatted_username': formatted_username, 'error': 'No data found' }) except Exception as e: print(f"Error processing {username}: {e}") error_players.append({ 'region': region, 'username': username, 'formatted_username': formatted_username if 'formatted_username' in locals() else 'Error in formatting', 'error': str(e) }) continue # Combine and save final results if all_merged_dfs: final_df = pd.concat(all_merged_dfs, ignore_index=True) # Save final combined stats filepath = os.path.join(save_dir, "player_stats.csv") final_df.to_csv(filepath, index=False) print(f"\nSaved combined stats for {len(all_merged_dfs)} players to {filepath}") # Clean up checkpoint file if os.path.exists(checkpoint_file): os.remove(checkpoint_file) print("Removed checkpoint file after successful completion") # Save error log if error_players: error_df = pd.DataFrame(error_players) error_filepath = os.path.join(save_dir, "player_stats_errors.csv") error_df.to_csv(error_filepath, index=False) print(f"Saved error log to {error_filepath}") return final_df else: print("\nNo player data was collected") return None