Spaces:
Running
Running
Commit
·
7b208e8
1
Parent(s):
0f897d9
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
import os
|
2 |
import fitz # PyMuPDF for parsing PDF
|
3 |
import streamlit as st
|
4 |
-
from
|
5 |
import re
|
6 |
|
7 |
-
# Load a pre-trained SentenceTransformer model
|
8 |
-
model_name = "paraphrase-MiniLM-L6-v2"
|
9 |
-
model = SentenceTransformer(model_name)
|
10 |
-
|
11 |
# Function to extract text from a PDF file
|
12 |
def extract_text_from_pdf(pdf_path):
|
13 |
text = ""
|
@@ -19,38 +15,28 @@ def extract_text_from_pdf(pdf_path):
|
|
19 |
yield page_num + 1, page_text # Return the page number (1-based) and the extracted text
|
20 |
|
21 |
# Function to truncate text to the nearest word boundary
|
22 |
-
def truncate_to_word_boundary(text, max_words=
|
23 |
words = re.findall(r'\w+', text)
|
24 |
truncated_text = ' '.join(words[:max_words])
|
25 |
return truncated_text
|
26 |
|
27 |
-
# Function to perform
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
# Convert the list of documents to embeddings
|
32 |
-
document_embeddings = model.encode([text for _, text in documents], convert_to_tensor=True)
|
33 |
-
|
34 |
-
# Compute cosine similarity scores of query with documents
|
35 |
-
cosine_scores = util.pytorch_cos_sim(query_embedding.unsqueeze(0), document_embeddings)[0]
|
36 |
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
page_num, text = documents[idx]
|
41 |
-
truncated_text = truncate_to_word_boundary(text, max_words)
|
42 |
-
results.append((page_num, truncated_text, cosine_scores[idx].item()))
|
43 |
-
results = sorted(results, key=lambda x: x[2], reverse=True)
|
44 |
|
45 |
-
return
|
46 |
|
47 |
def main():
|
48 |
-
st.title("
|
49 |
|
50 |
pdf_file = st.file_uploader("Upload a PDF file:", type=["pdf"])
|
51 |
-
|
52 |
|
53 |
-
if st.button("
|
54 |
if pdf_file:
|
55 |
pdf_path = os.path.join(os.getcwd(), pdf_file.name)
|
56 |
with open(pdf_path, "wb") as f:
|
@@ -59,15 +45,21 @@ def main():
|
|
59 |
# Extract text from the PDF along with page numbers
|
60 |
pdf_text_with_pages = list(extract_text_from_pdf(pdf_path))
|
61 |
|
62 |
-
|
|
|
|
|
63 |
os.remove(pdf_path) # Delete the uploaded file after processing
|
64 |
|
65 |
-
st.write(f"
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
if __name__ == "__main__":
|
73 |
main()
|
|
|
1 |
import os
|
2 |
import fitz # PyMuPDF for parsing PDF
|
3 |
import streamlit as st
|
4 |
+
from transformers import pipeline
|
5 |
import re
|
6 |
|
|
|
|
|
|
|
|
|
7 |
# Function to extract text from a PDF file
|
8 |
def extract_text_from_pdf(pdf_path):
|
9 |
text = ""
|
|
|
15 |
yield page_num + 1, page_text # Return the page number (1-based) and the extracted text
|
16 |
|
17 |
# Function to truncate text to the nearest word boundary
|
18 |
+
def truncate_to_word_boundary(text, max_words=100):
|
19 |
words = re.findall(r'\w+', text)
|
20 |
truncated_text = ' '.join(words[:max_words])
|
21 |
return truncated_text
|
22 |
|
23 |
+
# Function to perform question-answering
|
24 |
+
def question_answering(question, pdf_text_with_pages):
|
25 |
+
pdf_text = "\n".join([text for _, text in pdf_text_with_pages])
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
# Perform question-answering using Hugging Face's Transformers
|
28 |
+
question_answerer = pipeline("question-answering", model="distilbert-base-cased-distilled-squad", tokenizer="distilbert-base-cased-distilled-squad")
|
29 |
+
answer = question_answerer(question=question, context=pdf_text)
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
return answer
|
32 |
|
33 |
def main():
|
34 |
+
st.title("Question Answering using a PDF Document")
|
35 |
|
36 |
pdf_file = st.file_uploader("Upload a PDF file:", type=["pdf"])
|
37 |
+
question = st.text_input("Ask your question:")
|
38 |
|
39 |
+
if st.button("Answer"):
|
40 |
if pdf_file:
|
41 |
pdf_path = os.path.join(os.getcwd(), pdf_file.name)
|
42 |
with open(pdf_path, "wb") as f:
|
|
|
45 |
# Extract text from the PDF along with page numbers
|
46 |
pdf_text_with_pages = list(extract_text_from_pdf(pdf_path))
|
47 |
|
48 |
+
# Perform question-answering
|
49 |
+
answer = question_answering(question, pdf_text_with_pages)
|
50 |
+
|
51 |
os.remove(pdf_path) # Delete the uploaded file after processing
|
52 |
|
53 |
+
st.write(f"Question: '{question}'")
|
54 |
+
st.write("Answer:", answer['answer'])
|
55 |
+
st.write("Score:", answer['score'])
|
56 |
+
st.write("Page Number:", answer['start'] + 1) # Add 1 to convert 0-based index to 1-based page number
|
57 |
+
|
58 |
+
# Display truncated context
|
59 |
+
start_page = answer['start']
|
60 |
+
context = pdf_text_with_pages[start_page][1]
|
61 |
+
truncated_context = truncate_to_word_boundary(context)
|
62 |
+
st.write("Context:", truncated_context)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
main()
|