Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
# Set up the device (GPU or CPU) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Function to perform sentiment analysis | |
def perform_sentiment_analysis(text): | |
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt") | |
inputs = inputs.to(device) | |
outputs = model(**inputs) | |
logits = outputs.logits | |
probabilities = torch.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
sentiment_label = "Positive" if probabilities[1] > probabilities[0] else "Negative" | |
return sentiment_label, probabilities | |
# Streamlit app | |
def main(): | |
st.title("Sentiment Analysis App") | |
st.write("Enter a text and select a pretrained model to perform sentiment analysis.") | |
text = st.text_area("Enter text", value="") | |
model_options = { | |
"distilbert-base-uncased-finetuned-sst-2-english": "DistilBERT (SST-2)", | |
"distilbert-base-uncased": "DistilBERT Uncased", | |
"bert-base-uncased": "BERT Uncased", | |
"bert-base-cased": "BERT Cased", | |
"bert-large-uncased": "BERT Large Uncased", | |
"bert-large-cased": "BERT Large Cased", | |
"roberta-base": "RoBERTa Base", | |
"roberta-large": "RoBERTa Large", | |
"albert-base-v2": "ALBERT Base v2", | |
"albert-large-v2": "ALBERT Large v2", | |
"google/electra-base-discriminator": "Electra Base Discriminator", | |
"google/electra-large-discriminator": "Electra Large Discriminator", | |
"xlnet-base-cased": "XLNet Base Cased", | |
"xlnet-large-cased": "XLNet Large Cased", | |
"gpt2": "GPT2", | |
"gpt2-medium": "GPT2 Medium", | |
"gpt2-large": "GPT2 Large", | |
"gpt2-xl": "GPT2 XL", | |
# Add more models here if desired | |
} | |
selected_model = st.selectbox("Select a pretrained model", list(model_options.keys())) | |
# Load the pretrained model and tokenizer | |
model_name = selected_model | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
if st.button("Analyze"): | |
sentiment_label, probabilities = perform_sentiment_analysis(text) | |
st.write(f"Sentiment: {sentiment_label}") | |
st.write(f"Positive probability: {probabilities[1]}") | |
st.write(f"Negative probability: {probabilities[0]}") | |
if __name__ == "__main__": | |
main() | |