Spaces:
Sleeping
Sleeping
File size: 2,164 Bytes
68c77d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import torch
import torch.nn as nn
from torchvision import transforms
from PIL import Image
import requests
from torchvision.models import vgg19
import gradio as gr
# Define preprocessing
preprocess = transforms.Compose([
transforms.Resize((224, 224)), # Resize images to 224x224
transforms.ToTensor(), # Convert images to tensor
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Normalize using ImageNet stats
])
# Load trained model
model = models.vgg19(weights='DEFAULT')
# Adjust the final fully connected layer for binary classification
num_ftrs = model.classifier[-1].in_features # Get the number of input features from the last layer
model.classifier[-1] = nn.Linear(num_ftrs, 2) # Replace with a new linear layer for binary classification
# Load the saved weights into the model
model.load_state_dict(torch.load('rice_plant_classification.pth', weights_only=True)) # Ensure this file exists
model.eval()
# Define class labels
class_to_label = {0: 'Healthy', 1: 'Unhealthy'}
# Inference function
def predict(image):
# Preprocess the image
img = Image.fromarray(image)
img = preprocess(img).unsqueeze(0) # Add batch dimension
# Perform inference
with torch.no_grad():
output = model(img)
probabilities = torch.softmax(output, dim=1)
predicted_class = torch.argmax(probabilities, 1).item()
confidence = probabilities[0][predicted_class].item()
# Return the class label and confidence
return class_to_label[predicted_class], f'{confidence * 100:.2f}%'
example_images = ["healthy.jpeg", "unhealthy.jpeg"]
# Create Gradio interface
interface = gr.Interface(fn=predict,
inputs="image",
outputs=[gr.Textbox(label="Prediction"), gr.Textbox(label="Confidence")],
title="Healthy vs Unhealthy Rice Plant Classifier",
description="Upload a rice plant image to classify either it is healthy or unhealthy.",
examples=example_images
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|